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Public-Key Cryptography Before 1985

Two public-key families emerged that were commercially
viable:

1. RSA
(based on integer factorization)

2. Diffie-Hellman/ElGamal
(based on the finite field discrete logarithm problem)
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RSA

Invented by Rivest, Shamir and Adleman in 1977.

Security is based on the hardness of the problem of
factoring an integer n that is the product of two primes p
and q of the same bitlength.

In 1985, n could be factored in subexponential time 2(log n)1/2

(using the ‘quadratic sieve’ algorithm).

Consequence: For a 64-bit level of security, one needed
n ≈ 2512.

Fully exponential time: 2c(log n) = nc [terribly inefficient]

Subexponential time: 2(log n)c

[inefficient, but not terribly so]

Polynomial time: (log n)c [efficient]
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Finite Fields

Let q = pm be a prime power.

There is a unique finite field Fq of size q.

Example: Prime Fields Fp

Integers modulo p: Zp = {0, 1, 2, . . . , p− 1}.

Example: Binary Fields F2m

Binary polynomials modulo an irreducible polynomial.

The nonzero elements of Fq form a cyclic group F
∗

q of size
q − 1.

Let g be an element of order n in Fq (where n divides q − 1).
Then 〈g〉 = {g0, g1, g2, . . . , gn−1} is a group of size n.
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Diffie-Hellman

Invented by Diffie and Hellman in 1976.

Let g be an element of order n in Fq, and let G = 〈g〉.

Bob
X = gx

Y = gyx y

K = Y x
= gxy K = Xy

= gxy

Alice

The finite field DLP: Given h ∈ G, compute the integer
z ∈ [0, n− 1] such that h = gz.
In 1985, the DLP in F

∗

q could be solved in subexponential

time 2(log q)1/2

(using ‘index-calculus’ algorithms) and in fully
exponential time

√
n (using Pollard’s rho method).

Consequence: For a 64-bit level of security, one needed
q ≈ 2512 and n ≈ 2128.
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Discrete Logarithm Problem (DLP)

The DLP can be generalized to arbitrary cyclic groups.

Let G = 〈g〉 be a group of prime order n.

The DLP in G is: Given h ∈ G, compute the integer
z ∈ [0, n− 1] such that h = gz.

The best generic algorithm for solving the DLP is Pollard’s
rho method which has a running time ≈ √

n.

Consequence: For a 64-bit level of security, one needs
n ≈ 2128.
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Elliptic Curves

An elliptic curve E defined over a finite field Fq is given by
an equation:

E/Fq : Y 2 = X3 + aX + b.

The solutions (x, y), where x, y ∈ Fq, to the equation form an
group. This group E(Fq) has size ≈ q.

R = (x3, y3)

x

y

P = (x1, y1)

Q = (x2, y2)

R = (x3, y3)

x

y

P = (x1, y1)
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Elliptic Curve Cryptography

In 1985, Koblitz and Miller proposed using the group of
points on an elliptic curve in public-key cryptography.

Their proposal was motivated by two factors:

1. The lack of a subexponential-time algorithm for the DLP
on elliptic curves (ECDLP).

Consequence: For a 64-bit level of security, one needs
q ≈ 2128.

2. The large number of elliptic curves (approximately 2q)
for each finite field Fq.
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Hyperelliptic Curves

A hyperelliptic curve C of genus g defined over a finite field
Fq is given by an equation:

C/Fq : Y 2 = X2g+1 + a2gX
2g + · · · + a1X + a0.

Note that a hyperelliptic curve of genus g = 1 is precisely an
elliptic curve. [Elliptic curve: Y 2 = X3 + aX + b]

The genus is a ‘measure of a curve’s complexity’.

A hyperelliptic curve gives a group of size ≈ qg.

Pollard’s rho method for solving the HCDLP has running
time qg/2.
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Hyperelliptic Curve Cryptography

In 1989, Koblitz proposed using groups from hyperelliptic
curves in public-key cryptography.

His proposal was motivated by two factors:

1. The lack of a subexponential-time algorithm for the DLP
on hyperelliptic curves (HCDLP).

Consequence: For a 64-bit level of security, one needs
qg ≈ 2128.
For example, g = 4 and q ≈ 232, or g = 8 and q ≈ 216.

2. The large number of hyperelliptic curves (approximately
q2g−1) for each finite field Fq.
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Number Field Sieve

(Pollard, Lenstra, Lenstra, Manasse; 1990)
Subexponential-time 2(log n)1/3

factoring algorithm.

(Gordon; 1990)
Subexponential-time 2(log p)1/3

for the DLP in F
∗

p.

Security Block Hash ECC Fq RSA

in bits cipher function ‖q‖2 ‖n‖2

80 SKIPJACK (SHA-1) 160 1024

112 Triple-DES SHA-224 224 2048

128 AES Small SHA-256 256 3072

192 AES Medium SHA-384 384 7680

256 AES Large SHA-512 512 15360
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Early Attacks on the ECDLP/HCDLP

(M, Okamoto, Vanstone; 1990)
Weil pairing attack : For very special elliptic curves E/Fq,
the ECDLP can be efficiently reduced to the DLP in the
finite field Fqk for some small k (where subexponential-time
attacks are applicable). [k = embedding degree]

Example: E : Y 2 = X3 + 1 over Zp, p ≡ 11 (mod 12) is
supersingular. The embedding degree is k = 2.

Supersingular elliptic curves have embedding degree k ≤ 6.
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Early Attacks on the ECDLP/HCDLP

[Recall: Pollard’s rho attack on the HCDLP has running time
qg/2]

(Adleman, DeMarrais, Huang; 1994)
Index-calculus subexponential 2(log qg)1/2

attack for very high
genus hyperelliptic curves ((2g + 1)0.98 ≥ q).

(Araki, Satoh, Semaev, Smart; 1997 )
Smart-ASS attack : For elliptic curves E/Fp of size p, the
ECDLP can be solved very efficiently.
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Ramifications

Many cryptographers and practitioners were traumatized by
these attacks on the ECDLP and HCDLP.

Their fears were somewhat alleviated by prohibiting the
weak curves from emerging ECC standards:

◮ Example: IEEE P1363 and ANSI X9.62 draft stanards
required that k ≥ 20 (thus excluding all supersingular
elliptic curves).

But many experts remained skeptical about the security of
both supersingular and ordinary elliptic curves.

In May 1997, RSA Security posted ECC Central on their
web site.
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Ron Rivest (1997)

“Elliptic curves show promise as an alternative basis on
which to implement public-key cryptography. They are a
plausible “back-up” to RSA in case someone should
discover a fast integer factorization algorithm. And in some
applications their apparent ability to utilize smaller public
keys might be of interest.”

“But the security of cryptosystems based on elliptic curves
is not well understood, due in large part to the abstruse
nature of elliptic curves. Few cryptographers understand
elliptic curves, so there is not the same widespread
understanding and consensus concerning the security of
elliptic curves that RSA enjoys....”
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Ron Rivest (1997)

“...Over time, this may change, but for now trying to get an
evaluation of the security of an elliptic-curve cryptosystem
is a bit like trying to get an evaluation of some recently
discovered Chaldean poetry. Until elliptic curves have
been further studied and evaluated, I would advise
against fielding any large-scale applications based on
them. ”

“As elliptic curves begin to receive the kind of stringent
review already received by RSA, they will (if they are not
broken) be added to RSA’s toolkits and recommended for
small-scale or short-term applications. In the end, time will
tell how well they stand up to attack.”
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Len Adleman (1997)

“It is correct that I am suspicious of elliptic curve
cryptosystems. .....”

“I suspect that the lack of a sub-exponential algorithm is
merely a matter of neglect....”

“I am fortified in this opinion by the fact that the Jacobians
of hyperelliptic curve were also suggested for
cryptography.... Nonetheless Ming-Deh Huang, Jonathan
DeMarrais and I were able to show that for ‘high genus’
hyperelliptic curves a subexponential algorithm does exist.”
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Standardized Elliptic Curves

1999-2000: The first ECC standards were issued.

Example: ANSI X9.62, 1999

◮ ECDSA: Elliptic Curve version of the DSA.

◮ Elliptic curves over prime fields Fp and binary fields F2
m .

◮ Requirement on the embedding degree: k ≥ 20.

Example: NIST’s FIPS 186-2 (ECDSA), 2000

◮ 5 randomly selected elliptic curves over prime fields Fp, where
the p are Mersenne-like primes (e.g. p = 2192 − 264 − 1).

◮ 5 randomly selected elliptic curves over binary fields F2
m , all

with m prime.

◮ 5 Koblitz elliptic curves over binary fields F2
m , all with m prime.
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XTR

(A. Lenstra & Verheul; 2000)

◮ ECSTR: Efficient Compact Subgroup Trace
Representation

◮ Faster than ECC and RSA.

◮ n | p2 − p+ 1 | p3 + 1 | p6 − 1, where p ≡ 2 (mod 3).

◮ XTR group X: order-n subgroup of F
∗

p6 .

◮ g ∈ X is represented as Trp6,p2(g) = g + gp2

+ gp4 ∈ Fp2 .

◮ “XTR is not affected by the uncertainty still marring
ECC”

◮ ECSTR: Elliptic Curves Still Too Risky
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XTR and Supersingular Elliptic Curves

◮ Let b ∈ Fp2 be a square but not a cube.

◮ The elliptic curve E/Fp2 : Y 2 = X3 + b is supersingular
and #E(Fp2) = p2 − p+ 1.

◮ Let P ∈ E(Fp2) be a point of order n.

◮ 〈P 〉 has embedding degree k = 3, and the Weil/Tate
pairings give an efficiently computable isomorphism
φ : 〈P 〉 −→ X ⊂ F

∗

p6.

◮ In 2000, we asked whether there is an efficiently
computable isomorphism ψ : X −→ 〈P 〉.

◮ ECSTR: Elliptic Curve Supersingular Trace
Representation
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Verheul’s Theorem

In May 2001, Verheul proved the following:
Suppose that there is an efficiently-computable
isomorphism ψ from the XTR group X to the order-n
subgroup 〈P 〉 of E(Fp2). Then the Diffie-Hellman problems
in X and 〈P 〉 are efficiently solvable.

He concludes that his results:

...provide evidence that the multiplicative group of a
finite field provides essentially more, and in any
case not less, security than the group of points of a
supersingular elliptic curve of comparable size.
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The Resurrection

Invention of pairing-based cryptography :
Joux & Sakai-Ohgishi-Kasahara (2000)
Boneh-Franklin (August 2001)

Permitted functionality not achievable by RSA/ECC.

◮ Killer application: Identity-based encryption.

Main tool: Weil/Tate pairings on elliptic curves with small
embedding degree!!

Supersingular elliptic curves were resurrected from the
dead!!

– 22

New Assumptions

Bilinear pairing: e : G × G −→ GT

Bilinear Diffie-Hellman Problem: Given group element g, gx,
gy, gz, compute e(g, g)xyz.

Strong Diffie-Hellman Problem: Given the m+ 1 group
elements g, gx, gx2

, . . . , gxm

, find a pair (c, h) (where c is a
nonzero integer mod n and h is a group element) such that
hx+c = g.

Decision Linear Problem: Given group elements g, gx, gy,
gax, gby and Z, decide whether Z = ga+b.
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Acceptance of Pairing-Based Cryptography

It is surprising that despite the prevailing mistrust of ECC in
general, and supersingular elliptic curves in particular,
pairing-based cryptography (PBC) was immediately
accepted by the research community.

There are four reasons for this:

1. The timing was right – the bitter RSA-ECC rivalry had
subsided.

2. PBC was not viewed by commercial organizations as
disruptive to their interests.

3. PBC was not viewed by academic researchers as
disruptive to their interests.

4. PBC protocols were presented with elaborate security
proofs.
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NSA: The Case for Elliptic Curve Cryptography

NSA: National Security Agency

www.nsa.gov/ia/industry/crypto_elliptic_curve.cfm

(2005) “The best assured group of new public key techniques is
built on the arithmetic of elliptic curves. This paper will outline a
case for moving to elliptic curves as a foundation for future Internet
security. This case will be based on both the relative security
offered by elliptic curves... and the relative performance of these
algorithms. While at current security levels elliptic curves do not
offer significant benefits over existing public key algorithms, as one
scales security upwards over time to meet the evolving threat posed
by eavesdroppers and hackers with access to greater computing
resources, elliptic curves begin to offer dramatic savings over the
old, first generation techniques.”
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NSA Suite B, 2005

For the protection of both classified and unclassified
National Security Information.

Also for the protection of classified government
communications with UK, Canada, and certain other NATO
countries.

The only public-key scheme is ECC.
One randomly selected elliptic curve over a 256-bit prime field.
One randomly selected elliptic curve over a 384-bit prime field.

About 1.3 million units of equipment will be replaced over
the next 10 years.

Equipment will be used for the next 20-50 years.
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NIST Key Lifetimes

◮ FIPS 201: Personal Identity Verification (PIV) of Federal
Employees and Contractor (with smart cards)

◮ SP 800-78: Cryptographic Algorithms and Key Sizes for PIV.

◮ Elliptic curves: P-256, P-384.

PIV authen. – 2013 RSA 1024/2048, ECDSA P-256

key 2014– RSA 2048, ECDSA P-256

Card authen. – 2013 RSA 1024/2048, ECDSA P-256

key 2013 – RSA 2048, ECDSA P-256

Digital signature – 2008 RSA 1024/2048, ECDSA P-256/P-384

key 2009 – RSA 2048, ECDSA P-256/P-384

Key management – 2008 RSA 1024/2048, ECDSA P-256/P-384

key 2009 – RSA 2048, ECDSA P-256/P-384
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ECC Deployments

Canada Post Digital Postal Marks

Research in Motion’s BlackBerry

Microsoft DRM 2.0 (used in Windows
media player)

German e-Passports
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Pairing-Based Cryptography

IETF RFC 5091 (December 2007 ):
Identity-Based Cryptography Standard (IBCS) #1
The only elliptic curves permitted are:
E : Y 2 = X3 + 1 over Zp, p ≡ 11 (mod 12)

Luther Martin, Voltage (2008): "The conservative choice for
implementing a pairing-based algorithm is to use a
supersingular curve."
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Recent Developments: ECDLP

(Frey; 1999) Weil descent methodology for reducing the
ECDLP for an elliptic curve over F2mk to the HCDLP for a
genus-g hyperelliptic curve over F2m.

(Gaudry, Hess, Smart; 2000) Realized Frey’s methodology
in their GHS Weil descent attack.

(M, Qu; 2001) Showed that the GHS attack fails for all
elliptic curves over F2m where m ∈ [160, 600] is prime.

(Jacobson, M, Stein; 2001) Showed that the GHS attack is
effective for some elliptic curves over F2m for some
composite m (e.g., m = 124 and 155).

(M, Teske; 2005) Showed that fields F2m with m divisible by
3, 5, 6, 7, 8 are weak (or potentially weak) for ECC.
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Recent Developments: ECDLP (2)

(Gaudry; 2004) Fully exponential q2−2/n attack on ECDLP
over extension fields Fqn for small n
(faster than Pollard qn/2 for small n ≥ 3).

(Diem; 2004) Subexponential attack on ECDLP
over extension fields Fqn for n2 ≈ log q.
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Recent Developments: HCDLP

[Recall that Pollard’s rho attack has running time qg/2]

(Gaudry; 2000) Fully exponential q2 attack for small genus
(faster than Pollard for g ≥ 5).

(Thériault; 2003) Fully exponential q2−2/(g+1) attack for
small genus
(faster than Pollard for g ≥ 4).

(Gaudry, Thériault, Thomé, Diem; Nagao; 2004) Fully
exponential q2−2/g attack for small genus
(faster than Pollard for g ≥ 3).
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Recent Developments: DLP on General Curves

(Diem; 2004) Fully exponential q2−2/(g−1) attack on the DLP
for “sufficiently general” non-hyperelliptic curves of genus
g ≥ 3 (faster than Pollard for small g ≥ 3).

(Enge; 2007 ) Subexponential 2(log qg)1/3

attack on the DLP
for a family of non-hyperelliptic genus-g curves defined over
Fq.

(Smith; 2008) Fully exponential q attack for about 18% of all
genus 3 hyperelliptic curves.
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Concluding Remarks

The ECDLP for elliptic curves over prime fields Fp and
binary fields F2m (with m prime) has withstood the test of
time.

But, of course, the future is impossible to predict.....

Deciding whether to use RSA, ECC, genus-2 hyperelliptic
curves, pairing-based cryptography, or a post-quantum
public-key system, prime fields or binary fields, random or
special parameters, does require speculation about future
developments and a lot of faith (and humility).
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Further Reading

A. H. Koblitz, N. Koblitz, A. Menezes,

“Elliptic curve cryptography: The serpentine course of a
paradigm shift”

Cryptology ePrint Archive: Report 2008/390
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