
Dieter Gollmann
Hamburg University of Technology
About the speaker

• PhD on a topic in cryptography, 1984
• Research on cryptographic algorithms & protocols, foundations of computer security, risk analysis
 – Container transport, German e-health card, now TRE₃PASS
• Course director, MSc in Information Security, Royal Holloway, University of London, 1992 – 1997
• Microsoft Research Cambridge, 1998 – 2003
• Chair for Security in Distributed Applications, Hamburg University of Technology, since 2003
• Now JSPS Invitational Fellowship at Kyushu University
Agenda

• My views on the intrinsic challenges in risk management
• Report on the way these challenges are addressed in the EU research project “Security is a people problem”
 – Be they part of the problem, be they part of the solution, people should be part of the model
• Acknowledgement: talk uses slides from project partners
• Talk gives my view, not necessarily the project’s view
From IT security

![Diagram of network architecture with virtualization layers and IP addresses]

192.168.1.0/24 192.168.2.0/24 192.168.3.0/24

VR

VFW

VSW

VM 1

VM 2

... VM

VM 3
Towards socio-technical systems
TRE$_{S}$PASS project 2012-2016

- EU FP 7 Integrated Project, funding $\approx € 10,000,000$
- Seventeen partners, large companies, SMEs, academia
- Expertise ranges from visualization to model checking to criminology
TRE$_S$PASS use cases

- Use cases to guide the project
- Obtained from industry partners and industry contacts
- For validating methods and tools developed
- To pose new research questions
Parasitic business models (tariff misuse of call termination)

- Fixed/mobile/virtual IP connection point with TSP A
- Fixed/mobile/virtual IP connection point with TSP B

Call termination fee
TSP A pays call termination charge to TSP B (per minute)

Mr. Clever
Model-based risk management

- Capture requirements – anamnesis
- Model system / organization, requirements, attacker
- Construct executable models
- Evaluate, analyze, communicate (visualize)
- Decide
Capture requirements
Fundamental dilemma of computer security

- **Security unaware** users have specific security requirements but usually no security expertise
- Risk management is communication
- How to get this communication started?
Facilitating communication

• CORAS: earlier EU project on model-based risk analysis
 – Stage 1: staff describes organization to security experts
 – Stage 2: security experts describe organization to its staff

• TRE₅PASS
 – Explores use of Lego building blocks in brainstorming sessions

http://heim.ifi.uio.no/~ketils/coras/index.htm
Model organization

- anamnesis
- visualize
- analyze
- record
- executable model
Fundamental challenge in model-based risk analysis

• Capturing and aligning two intrinsically different views of a system, the operator’s view and the attacker’s view

• Operator’s view framed by intended use of the system
 – Includes features relevant for describing operation of the system
 – May include defenses against anticipated types of attacks

• Attacker’s view
 – Can be approached in two ways
Attacker’s view – 1

- Extend operator’s view: attack points and attack patterns
 - Alignment of the two views is comparatively easy
 - View on attacks may be blinkered by too much familiarity with intended use of the system (“Betriebsblindheit”)
 - May miss attacks exploiting features outside of the system model

- Artful attackers explore gaps between operator’s model and actual system to find levers for an attack
 - If it is provably secure, it probably isn’t [Lars R. Knudsen]
 - Models are abstractions; gaps MUST exist
Attacker’s view – 2

• Create attacker’s view independently of operator’s view

• Some information about the system must be available

• Attacks identified at this stage may turn out to be infeasible because of specific features of the system under analysis that had not been considered
 – “But this attack is not possible because …”
 – System model needs to be refined

• Aligning the two views tends to be more challenging
TRE₅PASS system model
(operator’s view)

• Represented as a directed graph
• Nodes can be
 – Locations, in physical space (e.g. rooms) or in cyberspace (e.g. network nodes, virtual machines)
 – Actors, e.g. people and processes; these nodes can move
 – Assets, can be attached to locations or actors, can be annotated with metrics
• Edges define various physical and logical connections
• Description language with formal semantics
TRE$_S$PASS system model
– quantities

• For actions, time to perform action, risk of detection when performing it, and cost of performing it

• For actors, likelihood of a social engineering attack to be successful and risk appetite of actor

• For locations, risk of detection at this location (for example due to surveillance cameras)
TRE₅PASS system model
– behavior and policies

• Domains limit where processes can move
 – Human actors restricted to room nodes, computer processes restricted to network nodes

• Possible to define the behavior of actors

• Policies, both access control policies and security goals
 – “To access the account, a PIN is required”
 – “This data item must remain confidential”

• Attacks treated as policy violations
TRE₃PASS system model
– example
Attacker’s view

• Attack trees for structuring brainstorming about attacks
• Attack trees augmented with
 – Attributes: likelihood, cost, time, skill level, …
 – Defense nodes (attack-defense trees, also work in TRE$_S$PASS)
• Tool support (also work in TRE$_S$PASS, ADTree tool)
• E.g. pruning of trees with respect to attacker profiles
Obtain secret data

Attacker profile
- Budget: 100€
- Skill: H
- Time: D

Steal laptop
- Social engineer key
 - Cost: 50€
 - Strength: H
 - Time: HR

Access room
- Cost: 0€
- Strength: L
- Time: MT

Remote access
- Crack password
 - Cost: 0€
 - Strength: M
 - Time: D

- Exploit vulnerability
 - Cost: 200€
 - Strength: V
 - Time: D
Obtain secret data

Steal laptop

Social engineer key
Cost: 50€
Strength: H
Time: HR
Likelihood: 0.5

Access room
Cost: 0€
Strength: L
Time: MT
Likelihood: 0.997

Crack password
Cost: 0€
Strength: M
Time: D
Likelihood: 0.993
Parasitic business models (tariff misuse of call termination)

Call termination fee
TSP A pays call termination charge to TSP B (per minute)

Fixed/mobile/virtual IP connection point
with TSP A

Fixed/mobile/virtual IP connection point
with TSP B

Mr. Clever
TRE$_s$PASS model

Operators Description
- `!`: Waiting for an input
- `.`: Sequential actions
- `||`: Executing actions in parallel
- `@`: "from" where the action is performed

Actions Description
- `in`: Waiting for incoming action
- `out`: Outgoing action to other actors

Actions and Operators

<table>
<thead>
<tr>
<th>Actions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>in</code></td>
<td>Waiting for incoming action</td>
</tr>
<tr>
<td><code>out</code></td>
<td>Outgoing action to other actors</td>
</tr>
</tbody>
</table>

Operators and Description

<table>
<thead>
<tr>
<th>Operators</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>!</code></td>
<td>Waiting for an input</td>
</tr>
<tr>
<td><code>.</code></td>
<td>Sequential actions</td>
</tr>
<tr>
<td>`</td>
<td></td>
</tr>
<tr>
<td><code>@</code></td>
<td>"from" where the action is performed</td>
</tr>
</tbody>
</table>

Equations
- $\text{Rev}_B = \#\text{calls} \times \text{CTF}_{A \rightarrow B}$
- $\text{Rev}_A = \#\text{calls} \times \text{CTF}_{B \rightarrow A}$

Definitions
- CTF: Call Termination Fee
- CPN: Called Party Number
Value modelling using e3fraud
Analysis

record

anamnesis

visualize

executable model

analyze
Fundamental challenges in analysis and evaluation

- How to deal with uncertainty?
- How to deal with complexity?
- How to deal with dependencies?
- How to achieve completeness?
Uncertainty

• How to model uncertainty?
 – Subjective probabilities (Bayesian approach)?
 – Frequencies (frequentist approach)?
 – Other mathematical frameworks, fuzzy theory, etc.?

• Do we have the data and do probabilities work at all?
 – Expectations that mandatory reporting will improve the situation
 – Current disillusion in the UK about data-driven approach
 – “We had lots of data on the financial markets but did not foresee the crisis of 2008 …”
 – “In security the past is a poor indicator of the future!”
Complexity

• Divide-and-conquer is a powerful strategy
 – E.g., attack trees break down a high-level goal into basic actions
 – Easier to assign metrics to basic actions than to high level goals

• How to return from divide-and-conquer?
 – Methods for combining metrics for subsystems to achieve compositionality

• How to deal with dependencies?
Completeness

- How to avoid missing out on attacks?
- Brainstorming is a creative but informal process, may miss attacks that are obvious in hindsight
- TRE₃PASS explores the use of model checking for systematic attack discovery
TRE\textsubscript{S}PASS analysis methodology

- Start from an attack tree
- Convert attack tree into an executable stochastic model
 - Interactive Markov chains
 - Markov automata (choice + time-dependent success probability)
 - Priced (weighted) timed automata (basis for model checking)
- Check for security properties in the executable model
 - Ideally, cover all possible executions of the system
TRE₃PASS analysis methods (sample)

- Computational analysis methods for attack trees
 - Extended to attack-defence trees
 - Pareto-optimal solutions considering multiple attributes
- Statistical model checking of timed automata
 - Derive results from several simulations of the system
 - Scales better than normal model checking
 - Deals with uncertainties in input values
- Model checking for policy violations
 - Delivers attack traces if a violation is found
 - Deals with completeness
Analyse
Understanding human actors

- Experiments on stealing laptops (in the past) and door keys (within TRESPASS) at Twente University
- Prevention campaign in key experiment significantly reduced vulnerability of people in an office environment
- Key-fob reduced cases of handing over a key to an attacker from 62.5% to 37%
Cues and warnings experiment

- Asked people in a shopping mall for email address, half of bank account number, data on online shopping
- Cues to cybercrime didn’t reduce cases of revealing data
- Warning leaflet decreased revealing of emails addresses but not of bank account information or online shopping
- Differences due to changes in context, from a quiet office environment to a square in a shopping mall?
 - J-W. Bullée et al.: The persuasion and security awareness experiment: reducing the success of social engineering attacks
Visualize

- record
- executable model
- analyze
- visualize
- anamnesis
Visualise
Conclusions
TRESPASS work flow

WP 2: Quantitative and qualitative data

WP 1: Counter-example generation

WP 3: Attack model: Attack tree, Extraction of stochastic models

WP 4: Result interpretation

WP 3: Low-level model: CTMC, Interactive Markov Chain, Games

WP 4: Stochastic analysis/Model Checking

Key metrics: probability, cost/effort, time, impact
Innovation 1

- A **process methodology** to support risk analysis in socio-technical environments
Innovation 2

- New and improved attack navigation tools to support these risk analyses of socio-technical attacks
- A portfolio of tools – not a single tool chain
- Many extensions of open source tooling
Innovation 3

- New **visualisation techniques** to enhance the presentation of complex socio-technical attacks
- Designed to:
 - Highlight important information
 - Better scalability
Summary

• TRE₃PASS includes human actors in its models
• Attack tress currently constructed manually, automatic generation under consideration
 – But would this be sufficient for capturing attacker’s view?
• TRE₃PASS moves risk management from descriptive models to executable models
• Validation of methods in various case studies with industrial partners, more in the final project year
Next dissemination event

January 13-15, 2016
TREsPASS winter school on Security in Socio-Technical Systems

- Organizers: Christian W Probst, Rene Rydhof Hansen
- Technical University of Denmark, Campus Lyngby
Security by design is an oxymoron

• Core question: is data driven analysis right way forward?
 – TRESPASS started from this assumption but where can it get us?
• Is risk management about avoiding unforgivable vulnerabilities?
 – Automated tools are the way forward towards complete coverage of known attacks
• Is risk management about avoiding awkward surprises?
 – If you can predict something, it is no longer a surprise
www.trespass-project.eu
contact@trespass-project.eu
Twitter: @TREsPASSProject
Contact us to join our public mailing list!

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 318003 (TREsPASS). This publication reflects only the author’s views and the Union is not liable for any use that may be made of the information contained herein.