Computer Security Symposium 2012
30 October — 1 November 2012

gooobobbboooobobbooooobbooooo

ooogf ooogf ooog 1 ooogd f oooogd g

1000000000000 10000D0000DO00O0ODOO0
657-8501 0O 0000000000 1-1 184-0015 00000000000 400 2-1
okubo.1@stu.kobe-u.ac.jp {isawa},{dai},{ko-nakao}@nict.go.jp

mmorii@kobe-u.ac. jp

good

0oooooooooobooooooooobooooboooonooooooooooooon
Jdddddoooooooooooooboboob bbb oo oo oooooDoooon
000 LCS(Longest Common Strings) 0 n-gram 000000000 O0LCSO n-gram OO0 00
0000 O(mxn)0OO0OD0O0O0O0O0OOOOO0OOODOOOODOOODOOODOOOOOOOOOO
goooogobooooooooobooooooooobooooboooogooooooooon
0000000000000 o000 oooooooon
oot oooooooonouooon
000000000000 o()DoooOUoUoo0oooDoUo0O0O0DU0DoDooOOoDUoooooO
gobooooobouoogooon

Function Estimation Method for Malwares based on part of
Binary Code

Ryo Okubof Masakatu Moriif Ryoichi Isawa Daisuke Inoue I
Koji Nakao 1

tGraduate school of Engineering, Kobe University
1-1 Rokkodai-cho, Nada-ward, Kobe 657-8501, JAPAN
okubo.1@stu.kobe-u.ac. jp
mmorii@kobe-u.ac. jp

iNational Institute of Information and Communications Technology
4-2-1 Nukuikitamachi, Koganei-city, Tokyo 184-0015, JAPAN
{isawa},{dai},{ko-nakao}@nict.go.jp

Abstract

Because malware analysis using similarities between malwares needs to make a lot of compar-
ison, calculation amount is an important factor. Existing methods use LCS(Longest Common
Strings) or n-gram to calculate similarity. The calculation amount of them is O(mxn). This
calculation amount is not appropriate for making a lot of comparison. We propose a fast method
for calculating similarity between malwares. We focus on distribution of byte code. To calculate
a similarity between the two of malwares, we apply Zero-mean Normalized Cross-Correlation.
Once we get the distribution of byte code, the calculation amount is O(1). Because this method
does not influenced by file size, we can calculate similarity at short times in any case. Moreover
we estimate function by adding point to each function according to similarity.

1 Introduction

These days a great number of people use
the Internet for shopping or on-line banking.
These services deal with their important per-
sonal information. Once a user’s information
leaks, the user will suffer a loss. If an Inter-
net user’s computer is infected by malware,
these information will be easily stolen. An-
tivirus vendors provide antivirus softwares to
prevent the Internet users from such damage.
To protect the users from malwares, the an-
tivirus vendors must analyze each malware.
Symantec reported that 403 million malwares
were created in 2011[2]. With various mal-
wares increasing rapidly, a burden on malware
analysts cannot be ignored. Many researchers
propose new methods for efficient analysis to
ease this burden. There are two methods for
analyzing malware, one is dynamic analysis,
and the other is static analysis. In dynamic
analysis, researchers actually execute a mal-
ware and observe its behavior. Because this
method just reports the behavior that the mal-
ware has done, the result will be precise. How-
ever, malwares infect the computer on which
they execute, and we have to recover the com-
puter system after analyzing malwares. On
the other hand, static analysis does not require
executing malware. In this paper, we propose
a fast method for static analysis to calculate a
lot of similarities at short times. We focus on
the distribution of byte code to calculate sim-
ilarities between malwares. The distribution
of byte code is a simple characteristic and is
easy to compare. We make use of ZNCC(Zero-
mean Normalized Cross-Correlation) to calcu-
late similarity. Because our method needs only
the distribution of byte code, it can fast calcu-
late the similarities regardless of the file sizes
of malwares. Moreover we use the similarity
to estimate function of malwares. We apply
this method for MWS dataset.

2 Related Works

We calculate similarities between malwares by
static analysis, and use it for function estima-
tion. In this section we introduce two works

that calculate similarity by static analysis.

Higashi et al.[3] calculate similarities based
on functions such as Windows APIs or subrou-
tines. They extract functions from disassem-
bled code. They calculate similarities between
functions of an unknow malware and functions
of an analyzed malware to estimate the func-
tion of the unknown malware. Suppose that
we have a target malware that we try to an-
alyze and an analyzed malware. The target
malware has functions a, b, and ¢. The ana-
lyzed malware has function e, f, and g which
are known. If the similarity between function
a and function e is high, Higashi et al. as-
sume that the target malware have function e.
They use 3-gram and LCS (Longest Common
Strings) to calculate similarities. Both meth-
ods are used for extracting common part of
two strings. 3-gram makes factors of 3 length
from strings and compare the factors. LCS
extracts the longest common strings from two
strings, according to eq. 1, where both a; and
b; denote strings.

0(a=0o0rb=0)
Lo by) = § et B o))l)
L(ai_l, bj_l) +1 (ai = bz)

Their method outputs a lot of data for com-
paring one pair of malwares. Therefore, the
problem is that how to deal with these data.

Iwamura et al.[4] calculate similarity from
disassembled code using LCS. Because LCS
requires a large amount of memory, they pro-
pose a contraction algorithm for disassembled
code. One of the major problems is that cal-
culating similarity with LCS requires compu-
tational costs.

The number of malwares is increasing
rapidly. Since we considered the fast algorithm
for malware analysis is needed in these days.
In this paper we propose the fast method to
calculate similarities between malwares and to
estimate function of malwares.

-10 -

DOS MZ header
(MZ. . .)

DOS stab
(This program cannot = = *)

PE header

Section Table

.text section
NG
[N

Execute/readonly

Figure 1: PE File structure

3 Similarity between Mal-

wares

We use similarities between malwares to esti-
mate function of malwares. We focus on the
distribution of byte code to calculate similari-
ties. The distribution of byte code is the sim-
plest character of a malware, and we can easily
compare two malwares using their distribution
of byte code. Moreover once we get the distri-
bution of byte code, we can calculate similar-
ity without influence of file size. To calculate
similarity according to malware function, we
extract the executable section. PE executable
file consists of several sections. Figure 1 shows
a structure of PE executable file. Section ta-
ble is available to decide which section is ex-
ecutable. Section table includes section in-
formation such as Name, Virtual Size, and
we can also get section Characteristics from
section table. Section Characteristics con-
sists of 4 byte code. Characteristics is logical
sum of flags. If a section includes executable
code, the characteristics has 0x00000020 flag
or 0x20000000 flag. We extract executable sec-
tions or sections that have executable code to
calculate similarity. Moreover, we consider 2
byte opcode as a trait. Because 2 byte opcode
begins with 0x0f, we extract the byte just after
0x0f and get the distribution. Figure 2 shows

u
wn
=]

I

Distribution

£ w
o} =1
= =]

T

c'\
Uﬂl

ol |” l\hwl‘“ U

L
)

‘ J
’W |‘|,\“ Mu'mh il +

s
=

il
m | u|‘k M f A I wﬁ "

A i

S
w
=]

\H
10 20 30 40 sn 60 70 au au AD BU cD un ED FD
Bytecode

Figure 2: PE File structure

Distribution

XY w

T ﬂ‘ . Lt “ I} ‘“‘ AL .."‘..‘l'“

] Ll T | Y AP L 1|
20 30 40 500 &0 70 SEI 90 40 BO CO DO ED FO

Bytecode

Figure 3: PE File structure

a distribution of all byte code in executable
section, on the other hand figure 3 shows a
distribution of the byte code just after 0xOf.
We can expect that deviation of similarity us-
ing figure 3 is greater than that of figure 2. We
make use of ZNCC to calculate similarity by
distribution of byte code. Eq. 2 shows how to
derive similarity R between I and T by ZNCC.

fvll(f(i) —I)(T(i) - T)
¢z — 12 x ST () T
Slmllarlty calculated by ZNCC runs from -1
through 1. In this work, if similarity is near to
1, we assume that there is a certain relation-

ship between malwares. Finally in this section
we give a procedure for calculating similarity.

Stepl Extract section information from sec-
tion table[

-11 -

Step2 Obtain section which characteristics
includes 0x00000020 or 0x20000000 flag.

Step3 Determine the distribution of byte
code that are just after 0x0f.

Step4 Calculate similarity by ZNCC.

4 Function Estimation

We make use of similarity to estimate func-
tions of a malware. To estimate function of un-
known malware, we calculate hundreds of sim-
ilarities between unknown malwares and ana-
lyzed malwares. Functions of analyzed mal-
ware is supposed to be known. We add point
to functions that analyzed malware have ac-
cording to similarities between the target mal-
ware and the analyzed malware. The added
point is calculated by eq. 3. If a point of a
function was higher than that of other func-
tions, that function is estimated to be pos-
sessed by the analyzing malware.

2m |r(m) f(m, k)| r(m)f(m, k) (3)
>om f(m, k)

We put the case that we estimate function
of unknown malware A, and we have analyzed
malwares B and C. We suppose that Malware
B have function a and function b, Malware C
have function a and function ¢. We consider
the distribution of A as I in eq. 2 and that of
B as T to calculate similarity Rap. The points
of functions P,, P, and P. are calculated as
below.

P(k) =

_ Rap|RaB| + Rac|Rac|

P, 4
7 (4)
P, = Rap|RaB| (5)
P. = Rac|Rac| (6)

In this work, we use NICT’s dynamic anal-
ysis result for function estimation. Table 1
shows all function that we use for function es-
timation.

5 Experiment

We used MWS dataset for this experiment.
Table 2 shows the malware names by McAfee

Table 1: Functions

Function

addReg

create,delReg

execute

alterFile

createFile(system dir)

search(Microsoft Phonebook file)

movefile

alterTxtFile

newHash

readFile

open,attrFile

openProcess

createDir

addReg(auto start)

copyFile

createService

alterFile

createFile(connect to Microsoft RPC service)

deleteFile(delete itself)

search

createMutex

openwindow

alterProcess

connect(web)

connect(DNS)

sendMail

backdoor

and the number of each malware in MWS
dataset.

We estimated the functions of two mal-
wares. Their hash values are 0ea635* and
6acb0c*, one is named W32/RAHack and the
other is named BackDoor-DOQ.gen.e. A lot of
W32/RAHack are in the dataset, whose hash
values are distinct from each other, and one
BackDoor-DOQ.gen.e is in the dataset. Fig-
ure 4 and figure 5 present distributions of sim-
ilarities between target malwares and analyzed
malwares.

In Figure 4, we can clearly divide similarities
into two. While in figure 5, we cannot. This
means that estimating function of 6acbOc* is
harder than that of Oea635*. Table.3 is the
result of function estimation of 0ea635*. We
can see that the points of the functions in ‘Pos-

-12 -

Table 2: MWS dataset Classified by McAfee

Name number
W32 /Conficker.worm.gen.b 134
W32/Conficker.worm.gen.a 440
W32 /Conficker.worm 106
BackDoor-DOQ.gen.e 1
W32/RAHack 9828
Generic Dropper.acj 6
W32 /Virut.n.gen 1
W32/IRCbot.gen.b
W32/Sdbot.worm!mj 2
W32 /Conficker.worm.gen.d 3
W32/Autorun.worm.h 1
W32/Virut.gen.a , W32/RAHack | 8
UNKNOWN 1
W32/Sdbot.worm.gen.ax 1
W32/Virut.n.gen 1
W32/IRCbot.gen.b

Generic.dx!beqz 1
W32/IRCbot.gen.a 1
W32/Sdbot.worm!mh 1
Generic BackDoor!lcj 1
W32/Sdbot.worm!mc 1

session’ are clearly higher than those of ‘Non-
possession’. This means that we can estimate
function of 0ea635*. While 6acbOc* has only
two functions, add register and delete itself.
This malware seems to detect analyzing envi-
ronment and delete itself. 6acb635* is named
BackDoor-DOQ.gen.e, which original malware
is BackDoor-DOQ. We make use of report of
BackDoor-DOQ for function estimation. Ta-
ble.4 shows its result. From this table, the
point of copyFile is higher than that of two
of possessed functions. While points of other
non-possessed functions are lower than that of
possessed functions. From this result, we can
estimate the functions of the malware.

On the other hand, we have several mal-
wares that function cannot be estimated. The
reason is that we do not have a sufficient
database to estimate function of malwares.
Because the database we have now consists of
malwares that occurred in a specified period,
samples are biased. In this method, if all sim-
ilarities between the target malware and ana-
lyzed malwares are low, the estimation cannot

Distribution of Similarity

1 ¥ -
b FRY 3 o B
“we W% 00 eee o .

0.8

0.6

z
= 0.4
E
wv
02 . .
p
b PPl | 1, %0008 o8 o0 4 oo Lo,
Pe 8 Vo e e W00 2 W2 \puz V¥ Y
CVRTG 100 47 ViE, 60 250

-0.2

Analyzed malware

Figure 4: 0ea635* simlirality distribution

Distribution of Similarity

08 |seas = g L * *
3

0.6

Z s . © . e
S 04 e Vo —
E b3 : '.."00 St s LR ’:o *%*
(g o2 ~,~w~:’~.vozw..\~« IR L L

) ot

. . 3 ¢ . AR » %o o * .
0 . oo -— -
50 100 150 200 250
0.2

Analyzed malware

Figure 5: 6acbOc* simlirality distribution

be succeeded. The database is the most im-
portant part for this method.

6 Conclusion

In this work, we proposed a method for es-
timating function of malwares. We also pro-
posed a fast algorithm for calculating similar-
ity between two malwares to estimate func-
tions. We made use of distribution of byte
code that is just after 0xOf, which is used for
two byte opcode. We calculated similarity us-
ing Zero-mean Normalized Cross-Correlation
between the two of malwares. Using this
method, we can fast calculate similarity. This
method allows us to calculate a lot of simi-
larities in a short time. Making use of this
characteristic, we proposed a method for es-
timating function of malware. Our method
estimates unknow malware’s function by cal-
culating similarities between target malware
and a lot of analyzed malwares which func-
tion is known. We estimated function of two

-13 -

Table 3: Function Estimation of 0ea635*

Possession Non-possession
0 Function | Point Function | Point
createService | 3.662 readFile | 1.420
search | 2.893 | open,attrFile | 1.388
copyFile | 2.341 | openProcess | 0.874
alterFile | 2.300 search | 0.790
execute | 2.097 backdoor | 0.771
deleteFile | 1.911 connect | 0.771
alterTxtFile | 1.749 | alterProcess | 0.763
addReg | 1.734 createFile | 0.021
newHash | 1.727 movefile | 0.018
createFile | 1.726 sendMail | 0.009
createMutex | 1.718 | openwindow | 0.003
create,delReg | 1.686 createDir | 0.003

Table 4: Function Estimation of 6acb635*

Possession Non-possession
create,delReg | 2.695 copyFile | 2.120
createMutex | 2.486 | open,attrFile | 1.975
createFile | 2.477 | alterTxtFile | 1.974
addReg | 2.450 readFile | 1.973
execute | 2.414 | openProcess | 1.846
connect | 2.352 search | 1.788
backdoor | 2.352 | openwindow | 0.950
alterProcess | 2.345 | createService | 0.809
deleteFile | 2.210 movefile | 0.725
alterFile | 2.170 createFile | 0.663
newHash | 2.073 sendMail | 0.643
search | 1.981 createDir | 0.502

malwares from MWS dataset. One was cor-
rectly estimated function, the other was not
correctly estimated but was sufficient for esti-
mation. In our method, the database of an-
alyzed malwares is the most important factor
for estimation. Because we do not have suffi-
cient database for this method, creating it is
one of our future works.

Acknowledgement

It is a pleasure to acknowledge the hospital-
ity and encouragement of the members, espe-
cially Dr. Masashi Eto, of the Cybersecurity
Laboratory in Network Security Research In-
stitute, NICT

References

[1] Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manuall ¢ ‘http://
www.intel.com’’

[2] Symantec Security Responsel] ¢ ‘http://
www.symantec.com/’’

[3] Yuka Higashil You Nakatsurul Takashi
Manabel Atsuo Inomatall Kazutoshi Fu-
jikawall Hideki Sunaharall “Proposal of
function estimation by malware code’s
function similarityd ”SCIS2011

[4] MAKOTO IWAMURAO MITSUTAKA
ITOHO YOICHI MURAOKAD “Auto-
matic Malware Classification System
Based on Similarity of Machine Code
Instructiond ”Journal of Information
Processingd vol.510 No.90 pp1-110 2010

[5] Yuko Ozasall Souma Katsute(l Masakatu
MoriillKoji Nakaoll “Estimated Function
of Malicious Code by Memory Dump
AnalysisO 7 CSS2009

[6] Yuu Araid Makoto Iwamural Yuhei
Kawakoyall Kazufumi Aokild Yuji
Hoshizawal “Analyzing Malware Fight-
ing against infection incidents with free
tools] ”O’REILLY Japan, Inc.

-14 -

