
Computer Security Symposium 2012
30 October – 1 November 2012

- 9 -

マルウェアの部分コードによる類似度判定および機能推定法

大久保諒 † 森井昌克 † 伊沢亮一 ‡ 井上大介 ‡ 中尾康二 ‡

†神戸大学大学院工学研究科
657-8501 兵庫県神戸市灘区六甲台町 1-1

okubo.1@stu.kobe-u.ac.jp

mmorii@kobe-u.ac.jp

‡独立行政法人情報通信研究機構
184-0015 東京都小金井市貫井北町 4丁目 2-1
{isawa},{dai},{ko-nakao}@nict.go.jp

あらまし
マルウェアの類似度判定では，検体を入手する度にデータベースに保存されている大量の検体

に対して類似度を求める必要があり，計算量の削減が課題として挙げられる．従来の類似度判定
法では LCS(Longest Common Strings)や n-gramを用いるものが多い．LCSと n-gramの計算量
はともにO(m×n)であり，大量の検体かつ頻繁に類似度を求める状況においては計算量が小さい
とは言い難い．本研究では高速な類似度判定を目的とし，マルウェアのバイトコードの出現頻度
を利用する方法を提案する．提案方式の要点は，各マルウェアのバイトコードの出現頻度をデー
タベース化するところにある．出現頻度のデータベースを作成した後は，正規化相互相関を用い
ることで類似度の計算量がO(1)となる．また類似度から機能毎にポイントを与え，マルウェアの
機能を推定する手法を提案する．

Function Estimation Method for Malwares based on part of
Binary Code

Ryo Okubo† Masakatu Morii† Ryoichi Isawa ‡ Daisuke Inoue ‡
Koji Nakao ‡

†Graduate school of Engineering, Kobe University
1-1 Rokkodai-cho, Nada-ward, Kobe 657-8501, JAPAN

okubo.1@stu.kobe-u.ac.jp

mmorii@kobe-u.ac.jp

‡National Institute of Information and Communications Technology
4-2-1 Nukuikitamachi, Koganei-city, Tokyo 184-0015, JAPAN

{isawa},{dai},{ko-nakao}@nict.go.jp

Abstract
Because malware analysis using similarities between malwares needs to make a lot of compar-

ison, calculation amount is an important factor. Existing methods use LCS(Longest Common
Strings) or n-gram to calculate similarity. The calculation amount of them is O(m×n). This
calculation amount is not appropriate for making a lot of comparison. We propose a fast method
for calculating similarity between malwares. We focus on distribution of byte code. To calculate
a similarity between the two of malwares, we apply Zero-mean Normalized Cross-Correlation.
Once we get the distribution of byte code, the calculation amount is O(1). Because this method
does not influenced by file size, we can calculate similarity at short times in any case. Moreover
we estimate function by adding point to each function according to similarity.

- 10 -

1 Introduction

These days a great number of people use
the Internet for shopping or on-line banking.
These services deal with their important per-
sonal information. Once a user’s information
leaks, the user will suffer a loss. If an Inter-
net user’s computer is infected by malware,
these information will be easily stolen. An-
tivirus vendors provide antivirus softwares to
prevent the Internet users from such damage.
To protect the users from malwares, the an-
tivirus vendors must analyze each malware.
Symantec reported that 403 million malwares
were created in 2011[2]. With various mal-
wares increasing rapidly, a burden on malware
analysts cannot be ignored. Many researchers
propose new methods for efficient analysis to
ease this burden. There are two methods for
analyzing malware, one is dynamic analysis,
and the other is static analysis. In dynamic
analysis, researchers actually execute a mal-
ware and observe its behavior. Because this
method just reports the behavior that the mal-
ware has done, the result will be precise. How-
ever, malwares infect the computer on which
they execute, and we have to recover the com-
puter system after analyzing malwares. On
the other hand, static analysis does not require
executing malware. In this paper, we propose
a fast method for static analysis to calculate a
lot of similarities at short times. We focus on
the distribution of byte code to calculate sim-
ilarities between malwares. The distribution
of byte code is a simple characteristic and is
easy to compare. We make use of ZNCC(Zero-
mean Normalized Cross-Correlation) to calcu-
late similarity. Because our method needs only
the distribution of byte code, it can fast calcu-
late the similarities regardless of the file sizes
of malwares. Moreover we use the similarity
to estimate function of malwares. We apply
this method for MWS dataset.

2 Related Works

We calculate similarities between malwares by
static analysis, and use it for function estima-
tion. In this section we introduce two works

that calculate similarity by static analysis.
Higashi et al.[3] calculate similarities based

on functions such as Windows APIs or subrou-
tines. They extract functions from disassem-
bled code. They calculate similarities between
functions of an unknow malware and functions
of an analyzed malware to estimate the func-
tion of the unknown malware. Suppose that
we have a target malware that we try to an-
alyze and an analyzed malware. The target
malware has functions a, b, and c. The ana-
lyzed malware has function e, f , and g which
are known. If the similarity between function
a and function e is high, Higashi et al. as-
sume that the target malware have function e.
They use 3-gram and LCS (Longest Common
Strings) to calculate similarities. Both meth-
ods are used for extracting common part of
two strings. 3-gram makes factors of 3 length
from strings and compare the factors. LCS
extracts the longest common strings from two
strings, according to eq. 1, where both ai and
bi denote strings.

L(ai, bj) =

0 (a = 0 or b = 0)
max(L(ai−1, bj), L(ai, bj−1))

(ai ̸= bi)
L(ai−1, bj−1) + 1 (ai = bi)

(1)

Their method outputs a lot of data for com-
paring one pair of malwares. Therefore, the
problem is that how to deal with these data.
Iwamura et al.[4] calculate similarity from

disassembled code using LCS. Because LCS
requires a large amount of memory, they pro-
pose a contraction algorithm for disassembled
code. One of the major problems is that cal-
culating similarity with LCS requires compu-
tational costs.
The number of malwares is increasing

rapidly. Since we considered the fast algorithm
for malware analysis is needed in these days.
In this paper we propose the fast method to
calculate similarities between malwares and to
estimate function of malwares.

- 11 -

DOS MZ header

(MZ・・・)

DOS stab

(This program cannot ・・・)

PE header

Section Table

.text section

Execute/readonly

Figure 1: PE File structure

3 Similarity between Mal-
wares

We use similarities between malwares to esti-
mate function of malwares. We focus on the
distribution of byte code to calculate similari-
ties. The distribution of byte code is the sim-
plest character of a malware, and we can easily
compare two malwares using their distribution
of byte code. Moreover once we get the distri-
bution of byte code, we can calculate similar-
ity without influence of file size. To calculate
similarity according to malware function, we
extract the executable section. PE executable
file consists of several sections. Figure 1 shows
a structure of PE executable file. Section ta-
ble is available to decide which section is ex-
ecutable. Section table includes section in-
formation such as Name, Virtual Size, and
we can also get section Characteristics from
section table. Section Characteristics con-
sists of 4 byte code. Characteristics is logical
sum of flags. If a section includes executable
code, the characteristics has 0x00000020 flag
or 0x20000000 flag. We extract executable sec-
tions or sections that have executable code to
calculate similarity. Moreover, we consider 2
byte opcode as a trait. Because 2 byte opcode
begins with 0x0f, we extract the byte just after
0x0f and get the distribution. Figure 2 shows

D
is
tr
ib
u
ti
o
n

Bytecode

Figure 2: PE File structure

Bytecode

D
is
tr
ib
u
ti
o
n

Figure 3: PE File structure

a distribution of all byte code in executable
section, on the other hand figure 3 shows a
distribution of the byte code just after 0x0f.
We can expect that deviation of similarity us-
ing figure 3 is greater than that of figure 2. We
make use of ZNCC to calculate similarity by
distribution of byte code. Eq. 2 shows how to
derive similarity R between I and T by ZNCC.

R =

∑N−1
i=1 (I(i)− Ī)(T (i)− T̄)√∑N−1

i=1 (I(i)− Ī)2 ×
∑N−1

i=1 (T (i)− T̄)2
(2)

Similarity calculated by ZNCC runs from -1
through 1. In this work, if similarity is near to
1, we assume that there is a certain relation-
ship between malwares. Finally in this section
we give a procedure for calculating similarity.

Step1 Extract section information from sec-
tion table．

- 12 -

Step2 Obtain section which characteristics
includes 0x00000020 or 0x20000000 flag.

Step3 Determine the distribution of byte
code that are just after 0x0f.

Step4 Calculate similarity by ZNCC.

4 Function Estimation

We make use of similarity to estimate func-
tions of a malware. To estimate function of un-
known malware, we calculate hundreds of sim-
ilarities between unknown malwares and ana-
lyzed malwares. Functions of analyzed mal-
ware is supposed to be known. We add point
to functions that analyzed malware have ac-
cording to similarities between the target mal-
ware and the analyzed malware. The added
point is calculated by eq. 3. If a point of a
function was higher than that of other func-
tions, that function is estimated to be pos-
sessed by the analyzing malware.

P (k) =

∑
m |r(m)f(m, k)| r(m)f(m, k)√∑

m f(m, k)
(3)

We put the case that we estimate function
of unknown malware A, and we have analyzed
malwares B and C. We suppose that Malware
B have function a and function b, Malware C
have function a and function c. We consider
the distribution of A as I in eq. 2 and that of
B as T to calculate similarity RAB. The points
of functions Pa, Pb, and Pc are calculated as
below.

Pa =
RAB|RAB|+RAC |RAC |√

2
(4)

Pb = RAB|RAB| (5)

Pc = RAC |RAC | (6)

In this work, we use NICT’s dynamic anal-
ysis result for function estimation. Table 1
shows all function that we use for function es-
timation.

5 Experiment

We used MWS dataset for this experiment.
Table 2 shows the malware names by McAfee

Table 1: Functions
Function

addReg

create,delReg

execute

alterFile

createFile(system dir)

search(Microsoft Phonebook file)

movefile

alterTxtFile

newHash

readFile

open,attrFile

openProcess

createDir

addReg(auto start)

copyFile

createService

alterFile

createFile(connect to Microsoft RPC service)

deleteFile(delete itself)

search

createMutex

openwindow

alterProcess

connect(web)

connect(DNS)

sendMail

backdoor

and the number of each malware in MWS
dataset.
We estimated the functions of two mal-

wares. Their hash values are 0ea635* and
6acb0c*, one is named W32/RAHack and the
other is named BackDoor-DOQ.gen.e. A lot of
W32/RAHack are in the dataset, whose hash
values are distinct from each other, and one
BackDoor-DOQ.gen.e is in the dataset. Fig-
ure 4 and figure 5 present distributions of sim-
ilarities between target malwares and analyzed
malwares.
In Figure 4, we can clearly divide similarities

into two. While in figure 5, we cannot. This
means that estimating function of 6acb0c* is
harder than that of 0ea635*. Table.3 is the
result of function estimation of 0ea635*. We
can see that the points of the functions in ‘Pos-

- 13 -

Table 2: MWS dataset Classified by McAfee
Name number

W32/Conficker.worm.gen.b 134

W32/Conficker.worm.gen.a 440

W32/Conficker.worm 106

BackDoor-DOQ.gen.e 1

W32/RAHack 9828

Generic Dropper.acj 6

W32/Virut.n.gen 1
W32/IRCbot.gen.b

W32/Sdbot.worm!mj 2

W32/Conficker.worm.gen.d 3

W32/Autorun.worm.h 1

W32/Virut.gen.a , W32/RAHack 8

UNKNOWN 1

W32/Sdbot.worm.gen.ax 1

W32/Virut.n.gen 1
W32/IRCbot.gen.b

Generic.dx!bcqz 1

W32/IRCbot.gen.a 1

W32/Sdbot.worm!mh 1

Generic BackDoor!1cj 1

W32/Sdbot.worm!mc 1

session’ are clearly higher than those of ‘Non-
possession’. This means that we can estimate
function of 0ea635*. While 6acb0c* has only
two functions, add register and delete itself.
This malware seems to detect analyzing envi-
ronment and delete itself. 6acb635* is named
BackDoor-DOQ.gen.e, which original malware
is BackDoor-DOQ. We make use of report of
BackDoor-DOQ for function estimation. Ta-
ble.4 shows its result. From this table, the
point of copyFile is higher than that of two
of possessed functions. While points of other
non-possessed functions are lower than that of
possessed functions. From this result, we can
estimate the functions of the malware.
On the other hand, we have several mal-

wares that function cannot be estimated. The
reason is that we do not have a sufficient
database to estimate function of malwares.
Because the database we have now consists of
malwares that occurred in a specified period,
samples are biased. In this method, if all sim-
ilarities between the target malware and ana-
lyzed malwares are low, the estimation cannot

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

S
im

il
a

ri
ty

Analyzed malware

Distribution of Similarity

Figure 4: 0ea635* simlirality distribution

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

S
im

il
a

ri
ty

Analyzed malware

Distribution of Similarity

Figure 5: 6acb0c* simlirality distribution

be succeeded. The database is the most im-
portant part for this method.

6 Conclusion

In this work, we proposed a method for es-
timating function of malwares. We also pro-
posed a fast algorithm for calculating similar-
ity between two malwares to estimate func-
tions. We made use of distribution of byte
code that is just after 0x0f, which is used for
two byte opcode. We calculated similarity us-
ing Zero-mean Normalized Cross-Correlation
between the two of malwares. Using this
method, we can fast calculate similarity. This
method allows us to calculate a lot of simi-
larities in a short time. Making use of this
characteristic, we proposed a method for es-
timating function of malware. Our method
estimates unknow malware’s function by cal-
culating similarities between target malware
and a lot of analyzed malwares which func-
tion is known. We estimated function of two

- 14 -

Table 3: Function Estimation of 0ea635*
Possession Non-possession

　 Function Point Function Point

createService 3.662 readFile 1.420

search 2.893 open,attrFile 1.388

copyFile 2.341 openProcess 0.874

alterFile 2.300 search 0.790

execute 2.097 backdoor 0.771

deleteFile 1.911 connect 0.771

alterTxtFile 1.749 alterProcess 0.763

addReg 1.734 createFile 0.021

newHash 1.727 movefile 0.018

createFile 1.726 sendMail 0.009

createMutex 1.718 openwindow 0.003

create,delReg 1.686 createDir 0.003

Table 4: Function Estimation of 6acb635*
Possession Non-possession

create,delReg 2.695 copyFile 2.120

createMutex 2.486 open,attrFile 1.975

createFile 2.477 alterTxtFile 1.974

addReg 2.450 readFile 1.973

execute 2.414 openProcess 1.846

connect 2.352 search 1.788

backdoor 2.352 openwindow 0.950

alterProcess 2.345 createService 0.809

deleteFile 2.210 movefile 0.725

alterFile 2.170 createFile 0.663

newHash 2.073 sendMail 0.643

search 1.981 createDir 0.502

malwares from MWS dataset. One was cor-
rectly estimated function, the other was not
correctly estimated but was sufficient for esti-
mation. In our method, the database of an-
alyzed malwares is the most important factor
for estimation. Because we do not have suffi-
cient database for this method, creating it is
one of our future works.
Acknowledgement
It is a pleasure to acknowledge the hospital-

ity and encouragement of the members, espe-
cially Dr. Masashi Eto, of the Cybersecurity
Laboratory in Network Security Research In-
stitute, NICT

References

[1] Intel 64 and IA-32 Architectures Soft-
ware Developer’s Manual，‘‘http://

www.intel.com’’

[2] Symantec Security Response，‘‘http://
www.symantec.com/’’

[3] Yuka Higashi，You Nakatsuru，Takashi
Manabe，Atsuo Inomata，Kazutoshi Fu-
jikawa，Hideki Sunahara，“Proposal of
function estimation by malware code’s
function similarity，”SCIS2011

[4] MAKOTO IWAMURA，MITSUTAKA
ITOH，YOICHI MURAOKA，“Auto-
matic Malware Classification System
Based on Similarity of Machine Code
Instruction，”Journal of Information
Processing，vol.51，No.9，pp1-11，2010

[5] Yuko Ozasa，Souma Katsute，Masakatu
Morii，Koji Nakao，“Estimated Function
of Malicious Code by Memory Dump
Analysis，”CSS2009

[6] Yuu Arai，Makoto Iwamura，Yuhei
Kawakoya，Kazufumi Aoki，Yuji
Hoshizawa，“Analyzing Malware Fight-
ing against infection incidents with free
tools，”O’REILLY Japan, Inc.

