
An empirical study of Android APK disributuion sites
using headless browser with navigation scripting

Ruo Ando1,a)

Abstract: With rising popularization of Android application, Android has become attractive target for malware deve-
plopers. More comprehensive view of infected APK distribution ecosystem should be helpful for malware analysis.
In this paper we report an empirical study for Android APK distribution using headless browser. Navigation scripting
with JavaScript enables more interactive web page crawling in order to fetch the results after dynamic web page load-
ing. We present the implementation detail of navigation scripting for gathering information of unofficial APK sites. In
experiment, we show statistical analysis of current situation of destination address of APK communications.

1. Introduction

1.1 Android security
Over the last decade, there have been rapid performance im-

provement of smartphones in both its computing power and con-
nectivity which came nearly to the level available on small desk-
top computers. In addition to becoming pervasive and ubiquitous,
computing resources of smartphones including storage and sen-
sors are rapidly becoming rich featured. On the downside, the
number of malwares targeting Android smartphones is drastically
increasing especially, for large scale exploitation. The large mar-
ket share of Android makes Android platform extremely attrac-
tive target for malware attacks. Especially, the openness of An-
droid markets are unfortunately one of the aspects which makes
it friendly for malware authors. With the openness of APK distri-
bution environment, malware developers can freely upload their
malicious applications which targets unsuspecting victims to in-
stall them. As a result, current smartphone platforms of Android
unexpectedly involve large ecosystems of untrusted third party
applications which are often integrated with SNS such as Face-
book and twitter as well ac remote sensing devices. Among these
apps, unsuspected users are required to provide passwords upon
installation or personal information.

The fluidity of the markets also presents enormous security
challenges. Rapidly developed and deployed applications [40],
coarse permission systems [16], privacy-invading behaviors [14,
12, 21], malware ,and limited security models have led to ex-
ploitable phones and applications.

1.2 Static analysis
We present the first large scale analysis of about 800000 appli-

cations. In particular, we have extracted about 12000 URLs and

1 Network Security Institute, National Institute of Information and Com-
munications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-
8795, Japan

a) ruo@nict.go.jp

expose IP adresses aud country code.
Performing a large-scale study by actually running APK has

several major drawbacks. First of all, physically acquiring the
trace logs of ten thousands of devices to study would be expen-
sive.Moreover, some of them may be another research effort to
operate outside the system for which they are designed. Unsur-
prisingly, static analysis performs better than dynamic analysis as
it does not require running environmrnt.

2. Web scraping

Recently web scraping is widely adopted for researching secu-
rity topics such as deep web exploration and malicious software
distribution. Basically, web scraping is a procedure for process-
ing the HTML of web page to retrieve data for converting the縲
fetched web page to another format including XML on JSON. Of-
ten scraper Simulate a human browsing a web site with browser
application. With a proper implementation of scraper, user can
access a web page even with stateless page transition exactly as
if a real browser would do. The Web Server recognize your ac-
cess as human manipulation and the Send back the page including
specific information you would like to extract.

2.1 AJAX
Trend in the last decade for pursuit of more interactive browser

interaction have seen AJAX which stands for asynchronous
JavaScript and XML. AJAX is a terminology for pointing a
group of web development technologies for handling interaction
of client side web applications. AJAX enables web client appli-
cation to send query and retch the response from a server asyn-
chronously without interfering with page appearance and its tran-
sition of current web page. AJAX does not always require XML.
Instead, JSON is often used and the request do not always need to
be asynchronous. AJAX is sort of comprehensive technology re-
lated to HTML and CSS which can be combined for marking up
and arranging information. One important object AJAX handles

Computer Security Symposium 2015 
21 - 23 October 2015

－215－



is DOM which is accessed by Java Script for dynamically dis-
playing and enabling client to interact with presented document.
JavaScript and the XML HttpRequest object provide a interface
for interacting asynchronously between browser and server in-
stead of reloading full page.

2.2 Testing framework and unit testing
Since Smalltalk was introduced in 1994 by Kent Beck, test-

ing framework as a variant of object-oriented approach has been
gradually evolved so that part of this approach is adopted and
ported to variety of other environments and languages. In testing
framework, an object as test case handle the execution of a single
test. For simplicity, each test is isolated from the others. Then, it
generates all its data before performing and destroys it when its
execution is completed. As variations, there are enormous varia-
tions of automated tests such as eclipse groovy. Particularly, the
Durandal Test Framework for unit testing is adopted by Pham-
tomJS and Jasmine. For performing the practice of testing a small
piece of code, unit testing is adopted. With unit testing shipped, a
smaller unit of code is isolated as a function or area of code. By
doing this, we can predictably determine if the part of code be-
haves as expected. Unit testing is the practice of testing a smaller
unit of code, which can be a function or area of code that we can
isolate. This gives us the ability to determine if the function be-
haves as expected. These tests are independent of each other and
can be executed individually. Each can verify for outputs based
on the given inputs, determine if the process will cause errors,
and also check if the process can handle exceptions. Using unit
testing, we can catch code problems and trace them easily. There
are more benefits of using unit testing, and it is probably one of
the necessities in programming

3. System overview

In this section we show the detail of proprosed system. Our
system is designed for gathering information and APK files from
official and unofficial distribution sites. As we discussed before,
for getting APK, browser should pass some interactions with dis-
tribution sites such as entering ID and clicking buttons. That is
because we adopts headless browser technologies. On the other
hand, scriptable API on this layer is written by Java Scripts in
asynchronous manner with many callbacks which result in that
scripting imposes a great burden ou progrommers about control-
ling concurrency. casperjs with navigation scripting is introduced
to reduce the yiming complexy by automatically handles synchro-
nization to some extent. Unfortunately, these two scripting meth-
ods are basically designed for single interaction with AJAX. Thus
these cannot be fully adopted for the situation where several pro-
cesyes of Java Scripts are running concurrently. In this phase we
need additional layer for handling synchronization (mainly for
timing).

Proposed system is divided into four parts: Linux, phan-
tomJS scriptable APIs, navigation scriptor with CasperJS and
perl spripts. Figure shows interaction between phantomJS and
CasperJS. The lower part of phantomJS takes managements in
handling inputs to browser with event base loop. the upper part
of casperJS provides friendly interface for coping with xpath se-

lector and wait() module for keeping good synchrouization. Fig-
ure shows overview of proposed system. the first lowest layer of
Linux kernel runs JS processes concurrently. phantomJS of sec-
ond layer handles I/O manipulation between crawler and browser.
CasperJS processes Xpath data and ifs completion of retrieving.
Finally perl script manages concurrent execution and each time-
out.

4. PhantomJS

PhantomJS is implemented based on Qt webkit aimed for pro-
viding a new solution for testing web applications with headless
browser. Another feature of PhantomJS is a utility for dynami-
cally capturing and rendering web pages as images which makes
it possible to manipulate web pages into different forms in pro-
grammable style. PhantonJS also provide functions to get net-
work level information such as response time about the page and
site resources. PhantomJS adopts Qt Webkit for implementing
core browser capability and also uses WebKit JavaScript engine
for interpreting and evaluating script. PhantomJS has a thrust
for capability of implementing anything and everything which a
webkit-based browser such as chrome, safari and opera browser.
PhantomJS is more than just a browser, providing programming
interface of CSS selector, DOM manipulation, JSON, HTML5
Canvas, and SVG. As we discussed later, PhantomJS provides
system related API performing file system I/ O, accessing system
environment variables.

4.1 Headless Browser
In this paper we propose an application of headless browsers

for automated control of a web page. Headless browser provides
automation similar to web browsers which executing via a CUI
or using network communication. Headless browser is usually
adopted for inspecting web pages as they are able recognize and
render HTML exactly like a browser would concerning page lay-
out, colour, font selection and execution of JavaScript and AJAX.
Particalarly, Java Script execution and AJAX are not available
by other testing methods. Since 2009, Google has been applying
headless browser for handling indexed content from websites that
use AJAX.

4.2 meta rules
Qt metacall is core routine for headless browser manipulation.

The Q OBJECT macro is defined in src/corelib/kernel/qobject-
defs.h. In that directly many functions implemented for fully sup-
port Qt meta object system.

1 int qt metacall(QMetaObject::Call call,int id,
2 void arguments);

List above shows basic template of qt metacall. Qt uses qt
metacall() to invoke the slots corresponding to the signal in the
case that a signal is emitted. QMetaObject::Call which is first
parameter is then set to QMetaObject::InvokeMetaMethod. For
setting or getting properties of the meta-object, the qt metacall()
function adopts other types of access methods. First argument of
write system call is socket descriptor and second one is socket
buffer.

－216－



Fig. 1 Proposal system overview1: PhantomJS and CasperJS.

Fig. 2 Proposal system overview2.

4.3 SendEvent
The key feature of PhantomJS is the Webpage API for sup-

porting sending events to the page. Events includes mouse events
and keyboand events. For handling these events, PhantomJS sets
sendEvent triggers directly to the target container. sendEvent
refers the x and y coordinates which are passed where the event
should be triggered. This makes it possible to simulate user be-
havior of performing the actual event, such as a click.

1 sendEvent(mouseEventType[, mouseX, mouseY, button=’
left’])

List above depicts a template of SendEvent routine. monseEvent-
Type such as mouseup, mousedown, mousemove, doubleclick
and click is set in the first argument. The following arguments
represent the mouse position for the event. The last argument of
button Which is set to left in default specifies the button type to

push. When mousemove type is set, there is no button pressed.

4.4 Module API
Custom modules are useful for writing custom objects and api

sets. Module API makes it possible to create original modules
and import it to an arbitrary point of actual implementation. im-
plemented in the part ofThe built-in modules are webpage, sys-
tem, fs (File System), and webserver.
4.4.1 WebPage API

WebPage API is core functionalities for accessing and manip-
ulating web documents including DOM objects. Access, control
and manipulation requires WebPage API. WebPage API makes
easy for providing a useful interface to activate capturing of
events like error reporting, navigation to other page and page
reloading. In addition, web API provides capability of capturing

－217－



web pages and rendering it as images. Another important fea-
ture is document manipulation on the fly oud dynamic traversal
of DOM objects. Web API is enormously useful for building an
automated user interface for event triggering so as to click mouse,
or post forms, and so on.
4.4.2 System API

System API provides execution environment of PhantomJS
scripts. Functionalities of system module are OS information,
environment variables, command-line arguments, and process-
related properties. DSL or more fine grained operation of Phan-
tomJS apps require system API.
4.4.3 File System API

File system API provide functionality ranging from Accessing
files, writing to text files to just reading a custom configuration
file 窶付 hese. Basic file I/O such as read, write and delete files
are performed by file system API.

5. CasperJS

With the rising popularity of phantomJS, several projects have
been started for evolving phantomJS functionality. CasperJS is
an open source extension of PhantomJS for improving tha script-
ing ability of PhantomJS�擦 asperJS mainly focuses on tasks
such as web scraping, testing, and DOM manipulation. Figure
illustrates the difference between phantomJS and CasperJS�燦
hile CasperJS depends on phantomJS, CasperJS provides a new
set of API functions for step-by-step coding approach, which is
known as navigation scripting.

5.1 XPath Selector
Usually headless browser uses CSS3 selector rather than Xpath

selectors. while xpath selectors are less readable than CSS. How-
ever, XPath selector takes advantages in some points such as
matching text contents or putting conditions on the DOM ele-
ment窶冱 ascendants or descendants. To use XPath selectors,
we should load selectXPath utility and use re syntax as follows:

1 1 var x= require(’␣casper’). selectXPath;
2 2 ... test.assertExists( x("//*[␣contains(␣text(),’Tokyo

␣(koganei)’)]"), ’

5.2 Callback mechanism - timing
Developing JavaScript requires building two pieces of code

such as loading JSON and updating page content with it. Ba-
sically these two blocks are non-blocking which results in that
the rest of the code keeps executing.

6. Experiment

In experiment, we prototyped CasperJS script which is gener-
ated by simple DSL (Domain Specific Language) mainly focus-
ing on enumerating loop for apps list.

6.1 Apps list
Our prototype targeted a popular and relatively small APK dis-

tribution site of www.freewarelovers.com which stores 1197 ap-
plications. List below shows brief structure summary of the site.
Once you click the category page, you will access applist page
each of which item is linked download page. We deployed our

prototype into Amazon VPC(virtual pri- vate cloud) with several
Micro instances. We compiled our sys- tem on ubuntu12 LTS
with Linux kernel 3.2.0. proposed system is hosted on Intel Xeon
E5645 with 2.4 GHZ clock

1 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/tr
2 [2]/td[1]/p[1]/a[1]")),215
3 3 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/

tr
4 [2]/td[1]/p[1]/a[2]")),255
5 4 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/

tr
6 [2]/td[1]/p[1]/a[3]")),62
7 5 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/

tr
8 [2]/td[1]/p[1]/a[4]")),175
9 6 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/

tr
10 [2]/td[1]/p[1]/a[5]")),91

6.2 Loop generation
We have implemented tiny DSL for generating cascade to

crawl XPATH of apps list. List below shows XPATH represen-
tation for each APK item. Here counten1 is one to increment and
counter2 is upper limit.

1 this.click(x("//*[\@id=\"fieldset\"]/table/tbody/tr
[2]/td[1]/p[1]/a[$counter1]")),$counter2

1 for($counter=1;$counter<$item;$counter++) {
2 print "casper.waitFor(function␣check()␣{␣\n";
3 print "竦 return£this.click(x(";
4 print "\"";
5 print "//*[\@id=";
6 print "\\";
7 print "\"fieldset";
8 print "\\";
9 print "\"]";

10 print "/table/tbody/tr[1]/td[3]/table/tbody/tr[";
11
12 print $counter."]/td/p/b/a\"))␣!=0;␣\n";
13 print "},";
14
15 print "竦 function£then()␣{␣\n";
16 print "console.log($category␣+␣\",\"+
17 $counter␣+␣\",\"+this.
18 getCurrentUrl());\n";
19 print "},\n";
20 print "竦 function£timeout()竦£{\n";
21 print "this.echo(\"timeout\");\n";
22 print "});\n";

The are two ways for sending mouse click event:
casper.mouse.click() and casper.click(). casper.click() just
handles a selector as a parameter. On the other hand,
casper.mouse.click() processes a selector or (x,y) position.
While casper.click() directly generates an event and allocate slot
to the target event, casper.mouse.click() does not handle any
element and just produces a mouse event at the given position.

6.3 Handling timeout
Handling timeout requires process monitoring entity outside

scripting framework. GNU coreutils and posix signal are pro-
vided, however, these are not available for headless browser
scripting framework. The solid solution for handling timeout is
using the the ALRM signal.

1 for($counter=1;$counter<$item;$counter++){
2 $TIMEOUT = 10;
3 eval{
4 local $SIGfALRMg= sub fdieg;

－218－



Fig. 3 CasperJS architecture.

5 8 alarm($TIMEOUT);
6
7 $str= "/home/ubuntu/casperjs/bin/竦竦
8 casperjs£test£"
9

10 $pid= fork;
11 if ($pid== 0) {
12 exec($str);
13 }
14 elsef
15 wait;
16 }
17 my $timeleft= alarm(0);
18 }
19
20 if ($@) f{
21 # timeoit
22 kill(SIGKILL, $pid);
23 print "\nERROR:␣TIMEOUT\n";
24 elsef
25 print "Hello!␣$name";

In experiment, we have retrieved most of APKs from the site
with reasonable computing time.

6.4 Results
In this section we show brief summary of mesurement results.

Figure shows depicts the frequency over monitored over 100000
APKs. As is often with other distributions concerning malware,
it seems that our plots are corresponding to zips distribution.

These two tables show the number of occurrence ot URL and
coutries. in this paper we simply adopts static analysis, there-
fore we cannot expose root-cause of URL ranking. However,
many anomaly behaviors have been found in the long-tail part
of destination shown in Figure�撒 able shows country ranking
of destination. It is turned out that Russia and China appear more
freauently than expected before the measurement.

7. Conclusion

We have presented the empirical study of Android APK dis-
ributuion sites using headless browser with navigation scripting.
With rising popularization of Android application, Android has
become attractive target for malware deveplopers. The thrust

Table 1 URL ranking

url occurrence
apps.opera.com 26400
www.w3.org 20622
ns.adobe.com 13843
purl.org 13153
www.iec.ch 10243
blackberry.apps.opera.com 2454
ios.apps.opera.com 2452
vk.com 2205
iptc.org 1006
www.google.com 871
html5shim.googlecode.com 785
code.google.com 503
www.youtube.com 394
vkontakte.ru 368

Table 2 country ranking

country occurrence
US 60107
EU 43585
CH 20017
RU 5231
AT 1100
NL 958
DE 820
CA 584
GB 398
FR 236
JP 214
SG 202
AP 174
CN 153
KR 115

－219－



Fig. 4 URL ranking of measurement results.

ofNavigation scripting with JavaScript enables more interactive
web page crawling in order to fetch the results after dynamic web
page loading. We present the implementation detail of naviga-
tion scripting for gathering information of unofficial APK sites.
In experiment, we show statistical analysis of current situation of
destination address of APK communications.

References

[1] Lok-Kwong Yan and Heng Yin. DroidScope: Seamlessly reconstruct-
ing os and dalvik semantic views for dynamic android malware analy-
sis. In Proceedings of the 21st USENIX Security Symposium, August
2012.

[2] Landon P. Cox, Peter Gilbert, Geoffrey Lawler, Valentin Pistol, Ali
Razeen, BiWu, Sai Cheemalapati: SpanDex: Secure Password Track-
ing for Android. USENIX Security 2014: 481-494

[3] SmallTalk http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html
[4] Durandal testing http://durandaljs.com/documentation/Testing-With-

PhantomJS-And-Jasmine.html
[5] Andrei Costin, Jonas Zaddach, Aurlien Francillon, Davide Balzarotti:

A Large-Scale Analysis of the Security of Embedded Firmwares.
USENIX Security 2014: 95-110

[6] William Enck, Damien Octeau, Patrick McDaniel, Swarat Chaudhuri:
A Study of Android Application Security. USENIX Security Sympo-
sium 2011

－220－


