
情報理論的指標と異常検知に基づく
難読化悪性 JavaScript 検知手法の提案

蘇 佳偉† 吉岡 克成‡ 四方 順司‡ 松本 勉‡
†横浜国立大学大学院環境情報学府

240-8501 神奈川県横浜市保土ケ谷区常盤台 79 番 7 号

‡横浜国立大学大学院環境情報研究院/先端科学高等研究院
240-8501 神奈川県横浜市保土ケ谷区常盤台 79 番 7 号

あらまし Drive-by-download攻撃を起こすための悪性JavaScriptは、セキュリティシステムの検知を回

避するために難読化される場合が多い。本研究では、従来の難読化悪性JavaScript検知手法の短所を改

善し、情報理論と異常検知に基づく新しい難読化悪性JavaScript検知方法を提案する。

Detecting obfuscated malicious JavaScript based on
information-theoretic measures and novelty detection

Jiawei Su† Katsunari Yoshioka‡ Junji Shikata‡ Tsutomu Matsumoto‡

†Graduate School of Environment and Information Sciences, Yokohama National University

79-7 Tokiwadai, Hodogaya-ku, Yokomaha-shi, Kanagawa 240-8501, JAPAN

‡Graduate School of Environment and Information Sciences / Institute of Advanced Sciences,

Yokohama National University

79-7 Tokiwadai, Hodogaya-ku, Yokomaha-shi, Kanagawa 240-8501, JAPAN

Abstract The malicious JavaScript is a main medium for computer network attackers to launch

popular Drive-by-download attacks. In a typical case, attackers compromise legitimate websites and

inject malicious JavaScript into their webpages which is used to bounce the visitors to other preset

malicious pages where the visitors actually get infected. In order to evade automatic detectors,

attackers always process their malicious JavaScript with varied obfuscation programs so that the

actual contents of the original script can be hid. In this paper, we propose a new light-weight filter

system for detection obfuscated malicious JavaScript, which improves several critical potential

weaknesses of previous analogous detection systems.

Computer Security Symposium 2015
21 - 23 October 2015

－226－

I. INTRODUCTION
The investigation domain of detecting malicious

JavaScript is always focused by security researchers.
Traditional signature matching has been proved as
inefficient to against recent malicious JavaScript.
Attackers commonly obfuscate their malicious codes
by varied or customized algorithms to hide malicious
contents so that detectors based on signature matching
could be evaded. This pushed researchers to probe new
approaches to against such threats. Recently, some
researchers have begun to attempt to build new static
detectors by utilizing machine learning and statistical
technique. In general, the machine learning based
detectors could make the detection become fuzzy and
flexible, which are extremely good at discovering
variants of existing maliciousness as well as unknown
threats. Such systems are always proposed as front-end
filter for large scale analysis which the filter can rapidly
discard potential benign JavaScript and bounce the
suspects to a back-end sophisticated analysis system
whose detection is more accurate but seriously resource
and time intensive. By utilizing such filters, only
suspicious JavaScript will be analyzed in detail
therefore the resources required for large scale analysis
can be substantially diminished.

In this paper, we introduce a new malicious
JavaScript filter. Similar to previous analogous systems,
it is a light-weight static system but equipped with new
extracted features based on information theory, and
new system modelling approach based on novelty
detection (semi-supervised learning) technique.

It is a common viewpoint that attackers use
obfuscation on their malicious JavaScript to hide
exploits and prevent exact rules or signature based
systems from detecting the attack. According to this
circumstance, most of the previous works regarded
obfuscation as potential maliciousness and extracted
features to characterize it. Namely, most of the
“malicious” features that have been extracted are
actually used to capture the obfuscation. According to
our recent observation, this assumption was again
validated.

It is true that some benign JavaScript is also
obfuscated whereas malicious JavaScript may also
come with plaintext. However, a system we aim to
design will be operated over large-scale to detect
suspicious JavaScript within a large amount of web
page documents, therefore we only focus on the general
viewpoint, namely the maliciousness always comes
with obfuscation, but not partial exceptions. In addition,
one could tune the sensitivity of our system by feeding
different parameters. For example, according to the
scenario of deploying our system as a front-end filter,
the false-positive (false alarm) is less expensive as it
only results in waste of resources whereas false-
negative (miss detection) will incur exposure to
malicious JavaScript and hence it is more critical.
Under such situation, one may wish to tune the system

to minimize the false-negative so that the system will
aggressively judge a given JavaScript as obfuscation.
Our system satisfies this requirement well, which
allows to be tune into the mode of favoring false-
negative, while giving low false-positive rate.

II. RELATED WORK
The machine learning and data mining technique is

becoming more and more common for detecting
network maliciousness. For instance, in the domain of
network intrusion detection, machine learning
classifiers such as SVM, neural network and cluster
technique have been used as common tools to conduct
outlier detection. On the other hand, in the field of
detecting malicious programming codes, as most of the
programming codes can be processed as pure text
streams, or natural languages, it is feasible to utilize
document processing techniques to characterize the
malicious codes and conduct the classification. Under
such background, the following related investigations
have been proposed.

A. Support Vector Machine (SVM) based detection
systems
Davide et al.[1] proposed a fast filter based on SVM

to detect maliciousness including malicious JavaScript
in web page documents over large scale, which their
motivation and background of investigation is very
similar to ours. They pointed out the weaknesses of
traditional rule-based detection systems as well as the
need of a fast maliciousness filter. By using SVM, their
new static system achieved elastic and fuzzy detection
so that their detection rate approximated to the
sophisticated systems while kept the advantage of time
and resource efficient. Other analogous SVM-based
systems such as [2, 3, 10] which used for directly
scanning malicious JavaScript have also been
introduced. Within these investigations, researchers
extracted a ton of rough and direct ‘malicious’ features
without evaluating their effectiveness and caring the
seriously increased amount of features, and attempt to
cover all possible malicious behaviors with these trivial
features, hence most of these features are not to be
guaranteed to have low redundancy and high robustness.
For instance, in [1, 2], researchers admitted that their
features may have potential robustness problem. On the
other hand, the great numbers of trivial features also
incurred increasing of dimensions of feature vectors for
describing data points (e.g. in [2], there are 65 features
and in [10], there are more than 150, compare to our 7
features) which definitely downgrade the running speed
of machine learning classifier as well as waste of
system resources. In addition, inefficient features may
also bring additional noises and confuse the classifiers
to carry out a worse detection result.

According to the discussion above, it is necessary to
do concentration and refining in order to reduce the
dimensions of features without sacrificing the accuracy
of detection. This is also a common task called “feature
extraction” in machine learning, which requires the

－227－

extracted features are concentrated and as less as
possible.

B. Approach based on frequency
Although [4, 5] proposed similar SVM-based

detection systems, they introduced a new way to extract
features of obfuscation based on frequency. They
realized the discrepancy on frequencies of text
characters between obfuscation and non-obfuscation
and consequently tried to measure such distinctions by
directly comparing the observed frequencies, or utilized
Shannon entropy to give a conclusion of such
distinctions in overall. Their results showed that such
frequency-based approach is a feasible way to conduct
detection.

However, to straightly compare frequency of each
character, one has to calculate and process over the
frequency values of all 94 text characters of JavaScript,
indicates the same amount of dimensions of feature
vectors for describing data points, which also cannot
achieve time and resource efficiency. In addition, this
approach could be very sensitive to the observed
frequencies and probably cause over-fitting. For
instance, we need to collect samples of non-obfuscation
as the training data to feed the classifier so that the
classifier could know how to recognize the non-
obfuscation. However, the observed frequencies of
some rare text characters in non-obfuscated JavaScript
may be strongly depend on the non-obfuscation
samples collected which may not comprehensive
enough to describe the general frequencies of these
characters in non-obfuscation so that the over-fitting
will occur. Such over-fittings will mislead the classifier
to make the classification results become unreliable.

On the other hand, only relying on Shannon entropy
is completely not enough.

C. Our improvement
In order to improve previous systems, we introduce

new feature extraction approaches based on
information theory, which each of these new features is
more concentrated and have high robustness since these
features capture the integral ‘statistical behaviors’ of a
JavaScript but not depend on any trivial and facial
‘malicious’ feature.

As a direct result, comparing to previous
investigation, we reduce the amount of features to 7 and
hence the operation of machine learning classifier will
be conspicuously accelerated and will cost less system
resources due to the reduction of dimensions of feature
vectors. We achieved this goal while still keeping high
detection rates.

On the other hand, nearly all of the previous works
did not focus much on selection of machine learning
classifiers and most of them utilized ordinary two–class
SVM adjusted with “optimal” parameters gained from
grid search. However, according to the customization
of obfuscation programs and the obfuscation do not
need to have any unified grammar restraint, even if

obfuscation is distinct from most of non-obfuscation,
each two unique obfuscation can be still very different
so that assuming all or most of obfuscation belong to
one single class and implement two-class SVM may not
be suitable. Therefore it will be more precise to regard
obfuscation as outliers compared to the non-
obfuscation class. We will present our results to prove
the correctness of this argument below. According to
such condition, we propose a novelty detection
approach which utilizing one-class SVM for detection,
which fits this situation much better than two-class
SVM. In addition, to train a one-class SVM, only
samples of normal class (i.e. non-obfuscation) are
needed, which solves the problem of unbalance data: it
is easy to collect a large amount of non-obfuscated
JavaScript samples by crawling over the Internet
whereas the obfuscation samples are relatively very few
due to their rare occurrences and very short life time.
The unbalance data is also a problem that none of the
previous investigations could solved.

III. METHODOLOGY

A. Classification of JavaScript
1) Non-obfuscation: JavaScript without any

further process or only been minimized in order to
decrease its length and accelerate webpage loading.
Minimization always involves deleting the space
characters; substitute long function names and so on.
By a glimpse, compared to obfuscation, non-
obfuscated JavaScript is much more similar to English
texts.

Fig. 1. An example of non-obfuscation JavaScript
2) Obfuscation: One may utilize varied algorithms

to pack JavaScript by replacing the original code with
other characters. The most significant feature of
obfuscation is the existence of a heavily obfuscated
payload contained in such script, which is a random
combination formed by meaningless text characters.

Fig. 2. An example of obfuscation with an obfuscated ASCII
encoding payload.

B. The characteristic of obfuscation
The most obvious feature of obfuscation compared

to non-obfuscation is un-readable: an obfuscated
payload does not need to obey any grammer rule of
natural languages or the standard JavaScript as long as
the payload could actually hide the maliciousness from
the detection. The “un-readable” is mainly reflected in

－228－

the abnormal frequencies of text characters in
obfuscation and will cause the difference of observed
frequencies of most characters between obfuscation
and non-obfuscation. For instance, many obfuscated
payloads usually contain many rare text charactors
such as punctuator “%”, “/” and upper case letters,
which usually have very few appearances in the case
of non-obfuscated JavaScript. In addition, as a special
case of abnormal observed frequencies, many
obfuscation programs work in a way of tautologically
producing similar text strings to form the building
blocks of the entire obfuscation payload so that such
payloads always contain large amount of several
specific repeated text characters (e.g. the punctuator
“%” and number “2” in Fig.2), which results the
observed frequencies of such characters significantly
higher than others since the size of the obfuscation
payloads always account for a very large proportion of
the intergral JavaScript. Whereas in the case of non-
obfuscation, the entire probability distribution of text
charactors will be relatively close to uniform due to the
restraints of English and programming grammar. We
name this phenomenon as “repeated patterns”.
Logically, the appearance of “repeated patterns” will
definitely giving the arising of the abnormal observed
frequencies but not vice versa.

C. Support vector machine
1) Overview: SVM is a model in pattern

recognition which is used for classification and
regression around the data sets. Intuitively, for
classification, SVM looks for a hyper-plane in feature
space as the boundary to separate the data points.

2) One-class SVM: In this investigation, we
implement one-class SVM: a classifier that is always
utilized to detect novelty such as network intrusion.
One-class SVM is a modification of ordinary two-class
version, proposed by Scholkopf et al. in [9].

To train a one-class SVM, only normal samples are
needed to form one normal class and any new input
point will be either classified into this normal class and
labelled as a normal point, or outside this class as an
outlier. Intuitively, one maps a set of normal training
data points into a feature space by a kernel function and
initially regards the origin of the feature space as the
only outlier. Then by using slack variables, one could
separate the image of the normal class S, which is a
class that includes most of the mapped training data
points from the origin by a hyper-plane with maximum
margin in order to estimate a discriminant function f
which is positive on normal class S and negative on
any point who is outside S. S is a small cluster with a
simple geometric shape capturing most of the normal
training data points.

For instance, assume x1, x2,..., xn are training data
points which all belong to the normal class S. Φ(x) is a

set of basis functions that map the training data points
to a feature space. To separate the training data from the
origin, which is the original outlier, the following
quadratic programming problem needs to be solved,
which is very similar to the case of ordinary two-class
SVM:

min 1
2

||w||2 + 1
vn
∑ ξi – ρn

i=1 (1)

subject to (w∙Φ(xi)) ≥ ρ – ξi for i=1,……, n; ξi≥0

The first term of the objective function penalizes
complexity of the geometric shape of S while the
second term penalizes the cost of errors caused when
discriminant function f(x) is negative on the training
data points of normal class by using slack variables ξi
to allow some training data points lie on the wrong side
of the hyper-plane as outliers. The parameter v
represents an upper bound on the fraction of data that
may be outliers. Solve this problem with respect to w
and ρ could gain the definition of hyper-plane w • Φ(x)
– ρ = 0 and the discriminant function f(x) = sign ((w •
Φ(x)) – ρ).

D. Information-theoretic measures for extracting
features.
For mining new features of obfuscation and non-

obfuscation, we consider an application of measures
from information theory so that a given JavaScript can
be statistically characterized well by such measures.
We then use discrepancies of these characteristics for
classification between obfuscation and non-obfuscation.
The calculation of these measures are based on unigram.
Intuitively, we regard an input JavaScript as a text
stream and assume characters of the stream are
observed values generated from an identical random
variable X, which takes values from 94 text characters
of JavaScript.

The information-theoretic measures under
consideration in this paper include several kinds of
entropy and divergence (distance) (see [14] for various
and important results in information theory) and they
could be classified into two classes according to their
motivations. Meanwhile, our approach also can be
regarded as an extension of previous Unigram systems
mentioned above. The first class includes entropy
measures defined by one probability distribution, which
are used to extract features of uncertainty of an input
JavaScript. In previous investigations, Shannon entropy
has been shown as an effective measure to detect
obfuscation and we extend the entropy approach by
introducing two more entropy measures: collision
entropy and approximation of Shannon entropy.
Theoretically, the entropy measures could only detect
the abnormal uncertainty (i.e. repeated patterns) but
can’t be ensured to be able to discover the abnormal
frequencies of text characters. For instance, to calculate
Shannon entropy on the two text strings “setInterval”
and “%20EW_DC%38” will give exactly the same

－229－

entropy value but it is obvious that the latter one is more
likely to be obfuscation as it contains many rare
characters such as “%” and upper case letters. The
second class includes distance measures: Kullback–
Leibler divergence, Bhattacharyya distance and
Euclidean distance, which are defined by two
probability distributions. Be different from the entropy
measures, the distance measures compare the observed
frequencies of each text character respectively in
obfuscation and non-obfuscation hence they can be
used to detect any kinds of abnormal observed
frequency phenomenon but not limited to “repeated
patterns”. On the other hand, unlike previous Unigram
systems which straightly comparing the frequencies of
all 94 characters (i.e. 94-dimensional vectors), the
distance measures allow us to conveniently and
explicitly present the results of frequency comparisons
between probability distributions in overall with scalar
values. Overall, we can expect improvement of the
previous results obtained by Shannon entropy and
direct frequency comparison by using these new
measures.

 In addition, compare to previous Unigram systems,
our method is relatively insensitive to the over-fitted
observed frequencies. Even if there could be some over-
fitting existing, since the calculation of each of our
metric involves the frequencies of all text characters
and give an overall evaluation with a single scalar value,
hence the influence of few over-fitted observed
frequencies can be mitigated.

1) Shannon entropy: In information theory,
Shannon entropy measures the uncertainty of a random
source (i.e. a probability distribution). Essentially,
Shannon entropy is the expected value of the amount
of “information”, where the term “information” is
defined as the negative logarithm of the probability
values. In existing investigations, Shannon entropy has
been utilized to identify malicious randomness.
However,nearly all of them didn’t give out a
systematical depiction on its effectiveness of detecting
obfuscation. In this investigation, we reused it as one
of our measures, as well as comparing its effectiveness
with other new measures we proposed.

According to our experiment, Shannon entropy is
indeed helpful for detecting obfuscation as it is able to
detect the appearances of repeated patterns that form the
obfuscation payload. Intuitively, the several repeated
text characters that are used to form the obfuscation
payload will have significantly higher observed
frequencies than others, which will result a lower
Shannon entropy value compared to the case of non-
obfuscation, whose observed frequencies of text
characters are relatively close to uniform and will cause
a higher Shannon entropy values.

For a random variable X, the Shannon entropy H(X)
is defined by

H(X) = –∑ p(x)log2p(x)x (2)

where the probability distribution p(x) is associated
with X. In our system, p(x) is calculated by the observed
frequency of a text character.

2) Kullback–Leibler(K-L) divergence: The K-L
divergence DKL (Q||P) or DKL (P||Q) measures the
difference between two probability distributions P and
Q. In our experiments, we utilized it to measure if the
probability distribution formed by observed
frequencies of a given JavaScript is close to the
“benign distribution”(see Section III-D), which is a
probability distribution that describes the statistical
feature of a standard non-obfuscation. If so, it implies
that the given JavaScript has a similar frequencies of
characters to the standard non-obfuscation JavaScript
defined by “benign distribution” which could become
one of the evidences that we could classify the given
JavaScript as non-obfuscation. Since the K-L
divergence is a non-symmetric measure, we calculate
both DKL (Q||P) and DKL (P||Q) through the following
definition:

 DKL (P||Q) = ∑ p(x) log2
p(x)
q(x)x (3)

DKL (Q||P) = ∑ q(x) log2
q(x)
p(x)x

where P and Q denote the “benign distribution” and the
observed distribution of the given JavaScript
respectively (usage of P and Q will be same below).

3) Approximation of Shannon entropy: We
introduce an approach to approximate Shannon
entropy based on asymptotic equipartition property
(AEP). If (x1,x2,……,xn) is an independent and
identically distributed (i.i.d) sequence according to a
probability distribution p(x), then we have:

lim
n→∞

– 1
n

log2p(x1,x2,……,xn) → H(X) in probability (4)

We next define the notion of the typical set: An i.i.d
sequence (x1,x2,……,xn)will be included in the typical
set Aε

(n) if its probability satisfies the following
inequality:

 H(X) – ε ≤ – 1
n

log2p(x1,x2,……,xn) ≤ H(X)+ε (5)

where ε is an arbitrarily small value. An important
property of typical set includes that we have Pr{Aε

(n)} >
1 – ε , if n is sufficiently large.

We assume that the input JavaScript
(x1,x2,……,xn) is long enough and hence it belongs to
the typical set. By assuming the input is non-
obfuscation, we calculate the probability
p (x1,x2,……,xn) of the input JavaScript by using
“benign distribution” (i.e. the value of each p(xi) is
taken from the “benign distribution” where i =1,….,n)

－230－

so that the probability value calculated indicates the
chance of occurrence of the input JavaScript as a
standard non-obfuscation. Then we evaluate [– 1

n
 log

p(x1,x2,……,xn)]. By AEP, since we have assumed the
input is a non-obfuscation, the value would approach
to the Shannon entropy of the standard non-
obfuscation, which can be calculated by “benign
distribution”. Otherwise the input is not a member of
the typical set. However, based on the property of
typical set mentioned above, the probability of an
observed i.i.d sequence does not belong to typical set
is negligible so that the input (x1, x2,……,xn) then
should be generated from another probability
distribution which differs from “benign distribution”
and belongs to its typical set. Therefore, we can
determine if the value [– 1

n
 log p(x1,x2,……,xn)] of the

input approaches to the Shannon entropy of “benign
distribution” by evaluating the absolute difference of
these two values, to indirectly identify the similarity
between the underlying probability distribution of the
input JavaScript and “benign distribution”. The input
(x1, x2,……,xn) is considered to be suspicious once its
underlying distribution is conspicuously different from
the “benign distribution”.

Even if this approach is categorized as an
uncertainty measure, it essentially evaluates the
difference of observed frequencies between two
JavaScript and behaves like a distance measure, so that
unlike other uncertainty measures, it can be used to
detect all kinds of abnormal observed frequencies but
not only “repeated patterns”. Compare to the distance
measures such as K-L divergence, which
straightforwardly compares the frequency values, the
AEP approach examines if the times of appearances of
each characters match the times it “should” have in a
non-obfuscation, which indicates an indirect way to
compare frequencies. Intuitively, for an input
JavaScript, if most of the text characters have the
“correct” times of appearances, then the value [– 1

n
 log

p(x1,x2,……,xn)] will actually approach to the
Shannon entropy value of the “benign distribution”.

4) Bhattacharyya distance: Similar to K-L
divergence, the Bhattacharyya distance is also a
measure for evaluating difference between two
probability distributions P and Q over a finite set, it is
defined by

DB(P,Q)= – ln(∑ �p(x)q(x)x) (6)

5) Collision entropy: The collision entropy is
defined by

 H2(X)= – log∑ p(x)2
x = – logP(X=Y) (7)

where random variables X and Y are given as
independent and identically distributed according to a
probability distribution p(x).

Except Shannon entropy, collision entropy is
another kind of expression of the uncertainty of text
characters. According to the characteristic of “repeated
patterns” discussed above, the minority of text
characters who have very high observed frequencies
will cause a large collision probability P(X=Y) and
results to a lower collision entropy, whereas in the case
of non-obfuscation, the observed probability
distribution would be relatively close to the uniform
distribution which results in a higher collision entropy.

6) Euclidean distance: The Euclidean distance can
be also utilized as a measure to evaluate difference
between two probability distributions. It is defined by

 d(P, Q) = d(Q, P) = �∑ (q(x) -p(x))2
x (8)

E. Benign distribution
We calculate several distance measures to inspect if

the input JavaScript is statistically close to the standard
non-obfuscation. By using samples from non-
obfuscation training data set (See section IV-B) we
collected, we introduce the “benign distribution” to
model the standard non-obfuscation. Intuitively,
“benign distribution” is an empirical probability
distribution that describes the frequency of occurrence
of each text character in our samples of non-obfuscation
training data set. Each probability value p(x) of “benign
distribution” is obtained by calculating the weighted
average of frequency of each text character in
JavaScript. For example, for a certain text character x,
we calculate p(x) by the following formula

p(x) = ∑ C
T

∙freq(x)n (9)

Where T denotes the total text length of all non-
obfuscation samples within the data set; C denotes the
length of a specific non-obfuscation sample in which
the text character x occurs, freq(x) indicates the
frequency of x observed in this non-obfuscation, and n
counts the number of samples that x occurs.

IV. EXPERIMENTS AND RESULTS

A. Sample data collection
We crawled the main pages of sites of Alexa “The

top 500 sites” URL list[13] since December, 2014 and
collected 2000 unique non-obfuscation samples. We
also obtained 400 unique obfuscation samples from
VirusTotal[11] and D3M 2010-2013 data sets[12].
Note that the obfuscation samples are not ensured to be
malicious themselves but definitely suspicious as they
were actually located within malicious HTML pages
and heavily obfuscated. We discarded any JavaScript
that less than 250 bytes, as their length is too short to

－231－

reveal the frequency features. For all samples, we
manually sieved to ensure there is no repeat.

B. Constructing the classifier
The one-class SVM model is built and trained

through the LIBSVM package with R language, with a
Radial basis function kernel and 10 cross validations.
We randomly selected 300 non-obfuscation samples as
training data (normal class) to train one-class SVM,
and used the rest of non-obfuscation samples and all
obfuscation samples as test data.

C. Results of calculations:
We compared calculated values of 7 measures we

selected, around three data sets: Non-obfuscation
training data, Non-obfuscation test data and
Obfuscation test data. Fig.3 depicts a part of the
comparisons.

 Overall, we found that the values of measures of
non-obfuscation samples in most cases are much stable
and concentrated while the values of obfuscation are
wild and random. Intuitively, most of the non-
obfuscation samples are “similar” and gather within a
cluster while the obfuscation samples are randomly
located outside this cluster. Such results proved our
assumption of obfuscation are outliers but not belong
to one single class.

Fig. 3. Comparisons of values of Shannon entropy and
approximation of Shannon entropy between three data sets

We also visualized the original 7-dimensional data

in 3-dimensional space through Classical
Multidimensional Scaling. Multidimensional scaling
(MDS) is an approach to visualize the similarity of a
set of high dimensional points. Of particularly, the
classical MDS relocates the high dimensional points
into 2 or 3-dimensional space while the Euclidean
distance between each two points in original space are
preserved as well as possible. As can be seen in Fig.4,
the locations of data points indicates a “Normal class
Versus Outlier” scheme.

Fig. 4. Mapping original 7-dimensional data space into 3
dimensional coordinate by using classical MDS. Red plots
indicate obfuscation while blue indicates non-obfuscation.

D. Training and test results
In order to test the effectiveness of each measure,

we firstly trained the one-class SVM classifier by only
utilizing each single measure to conduct the detection
on three data sets and evaluated the accuracies. The
results are shown in Fig.5.

As can be seen, each of our measures can
individually be feed to a single classifier for detection
where most of these classifiers gave good detection
accuracies on non-obfuscation data while their results
on obfuscation data set are middling. Namely, each of
them is a weak classifier. From the figure, we could
also compare the effectiveness of each measure.
Especially, for detecting obfuscation, compare to
Shannon entropy, which has been utilized within
previous investigations, 4 of our new measures: K-L
divergence DKL (Q||P) and DKL (P||Q), AEP entropy
approximation and collision entropy averagely
performed better, while the Euclidean distance has the
similar performance to the Shannon entropy. It is also
interesting to note that the statistical distance measures
averagely have better performances compare to
uncertainty measures, therefore it justified the fact
foregoing mentioned above that distance measures
could capture all kinds of abnormal observed
frequencies whereas uncertainty measures are only
able to detect the “repeated patterns”, which is only a
special case of the phenomenon of abnormal observed
frequencies so that they are less effective compared to
distance measures.

Fig. 5. Comparing effectiveness of measures

Then we combine these weak classifiers to one
single strong classifier by feeding all of 7 features to a
one-class SVM. The final detection accuracy of this
combined system is shown in Table.1. According to the
foregoing discussion, one may want to tune our system

5

5.5

6

6.5

7

7.5

8

8.5

9

0 500 1000 1500 2000 2500

Va
lu

e

Indexes of JavaScript Samples

Approximation of Shannon entropy

Non-obfuscatedTrainingDat
ObfuscatedTestData
Non-obfuscatedTestData
BenignDistributionEntropy

3

3.5

4

4.5

5

5.5

6

6.5

0 500 1000 1500 2000 2500

Va
lu

e

Indexes of JavaScript Samples

Shannon entropy

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Shannon
Entropy

K-L divergence
DKL(P||Q)

Approximation
of Shannon

entropy

Bhattacharyya
distance

Collision
Entropy

Euclidean
distance

K-L divergence
DKL(Q||P)

Non-obfuscation Training Data Non-obfuscation Test Data Obfuscation Test Data

－232－

to minimize false-negative hence the accuracy tests are
conducted under different conditions. The balance
mode considers the tradeoff between false-negative
and false-positive, while mode of minimizing false-
negative favors false-negative as much as possible.
Under balance mode, we respectively utilized all 7
features as well as only the top 4 effective features
ranked by the results of Fig.5, which are K-L
divergence DKL (Q||P) and DKL (P||Q), AEP entropy
approximation and collision entropy, to conduct the
test twice.
TABLE I. FINAL ACCURACY RESULTS ON THREE DATA SETS

E. Time consumption
 We utilize all of our samples for testing if our

system is time efficient. The test is conducted on a
machine running Window7 Professional 64 bits, with
Intel Xeon CPU E3-1225 CPU and 16GB RAM. We
used build-in function “clock()” in C and “proc.time()”
in R language to surround our feature extraction and
classification programs to measure the time cost.

The test results are shown in Table.2. Note that the
values are the total time to process the entire sample
set but not time per sample. By evaluating the results,
it is clear that our system is fast which is able to
conduct large scale analysis.

TABLE II. TEST RESULTS OF TIME CONSUMPTION

V. CONCLUSION AND FUTURE WORK
Our new filter system significantly reduced the

dimensions of feature vectors while still giving high
accuracies for classifying obfuscation and non-
obfuscation. According to the fact that our measures do
not count on specific and ambiguous ‘malicious’
behaviors, as well as the results of Fig.5 and Table.1,
we showed that these measures have high robustness.
We also justified the correctness of our modelling
approach of novelty detection based on the results of
data points distribution performed by Fig.3 and Fig.4,
in which the non-obfuscation samples behave strong
similarity and their values of measures always resemble
while the obfuscation samples are randomly located
outside the cluster of non-obfuscation. To sum it up, our
systems performed high accuracies with practical time
and resource, which can be operated over large scale
smoothly.

On the other hand, as the detection of our system
completely counts on the observed frequency and

appearances of text characters of a given JavaScript,
which requires the input JavaScript has to be long
enough to reveal its real features of frequency.
Therefore our system is not effective to inspect scripts
that are too short and hence we made a threshold of
minimum text length of 250 bytes in our experiment.
Fortunately, short malicious obfuscation is rare.

Since our system only inspects obfuscation, one
may have to combine our system to others to conduct a
comprehensive detection of maliciousness, hence it will
be necessary for us to test the compatibility of such
combinations. On the other side, we will continue to test
our system on other data sets as well as extension of our
approach to detect other malicious codes.

ACKNOWLEDGEMENT

 A part of this work was conducted under the
auspices of the MEXT Program of Promoting the
Reform of National Universities.

REFERENCES
[1] D. Canali, M. Cova, G. Vigna and C. Kruegel, “A Fast Filter

for the Large-Scale Detection of Malicious Web Pages,” in
Proc. of the 20th international conference on World wide web,
2011, pp.197–206.

[2] P. Likarish, EJ. Jung, I. Jo, “Obfuscated Malicious JavaScript
Detection using Classification Techniques,”,in Proc. Of
Malicious and Unwanted Software, 4th International
Conference, 2009, pp. 47–53.

[3] W. Wang, Y. Lv, H. Chen, and Z. Fang, “A static malicious
JavaScript detection using SVM,” in Proc. of the 2nd
International Conference on Computer Science and Electronics
Engineering, 2013.

[4] B. Kim, C. Im and H. Jung, “Suspicious malicious web site
detection with strenth analysis of a JavaScript obfuscation,”
International Journal of Advanced Science and Technology,
Vol.26, January 2011

[5] M. Nishida et al., “Obfuscated malicious JavaScript detection
using machine learning with character frequency,” Information
processing society of Japan SIG Technical report, Vol. 2014.

[6] K. Rieck, T. Krueger, and A. Dewald, “Cujo: Efficient
detection and prevention of drive-by download attacks,” in
Proc. of the 26th Annual Computer Security Applications
Conference, 2010, pp. 31-39.

[7] Y. Choi, T. Kim and S. Choi, “Automatic detection for
JavaScript obfuscation attacks in web pages through string
pattern analysis,” International Journal of Security and Its
Applications, Vol. 4, No. 2, April, 2010, pp.13-26.

[8] L. M. Manevitz and M. Yousef, “One-Class SVMs for
Document Classification,” Journal of Machine Learning
Research, Vol. 2, 2002 pp. 139-154.

[9] B. Scholkopf, R. Williamson, A. Smola, J. Taylor and J. Platt,
“Support Vector Method for Novelty Detection,” S.A. Solla,
T.K. Leen and K.-R. Muller, pp. 582–588, MIT Press (2000).

[10] Y. Houa, Y. Changb, , T. Chenb, , C. Laihc, and C. Chena,
“Malicious web content detection by machine learning”,
Expert Systems with Application, January 2010, pp. 55–60.

[11] VirusTotal[online]. Available: https://www.virustotal.com/
[12] M. Kamizono et al, “Datasets for Anti-Malware Research -

MWS Datasets 2013”, MWS2013, October, 2013
[13] Alexa Top Sites[online].

Available: http://www.alexa.com/topsites, 22 Dec, 2014
[14] T. M. Cover and T. A. Thomas, Elements of Information

Theory, the 2nd edition, 2006, John Wiley and Sons, Inc.

 Data set

Mode

Obfuscation test
data

Non-
obfuscation
test data

Non-obfuscation
training data

Balance 96.20% 97.78% 97.01%
Balance
(top 4 features)

95.50% 97.72% 97.67%

Minimizing
false-negative

99.25% 81.42% 83.06%

Target of test Feature extraction time Classification time
2000
non-obfuscation
samples

2.029 seconds 0.04 second

400 obfuscation
samples

0.917 second Less than 0.01 second

－233－

