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あらまし Drive-by-download攻撃を起こすための悪性JavaScriptは、セキュリティシステムの検知を回

避するために難読化される場合が多い。本研究では、従来の難読化悪性JavaScript検知手法の短所を改

善し、情報理論と異常検知に基づく新しい難読化悪性JavaScript検知方法を提案する。 
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Abstract The malicious JavaScript is a main medium for computer network attackers to launch 

popular Drive-by-download attacks. In a typical case, attackers compromise legitimate websites and 

inject malicious JavaScript into their webpages which is used to bounce the visitors to other preset 

malicious pages where the visitors actually get infected. In order to evade automatic detectors, 

attackers always process their malicious JavaScript with varied obfuscation programs so that the 

actual contents of the original script can be hid. In this paper, we propose a new light-weight filter 

system for detection obfuscated malicious JavaScript, which improves several critical potential 

weaknesses of previous analogous detection systems. 
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I. INTRODUCTION  
The investigation domain of detecting malicious 

JavaScript is always focused by security researchers. 
Traditional signature matching has been proved as 
inefficient to against recent malicious JavaScript. 
Attackers commonly obfuscate their malicious codes 
by varied or customized algorithms to hide malicious 
contents so that detectors based on signature matching 
could be evaded. This pushed researchers to probe new 
approaches to against such threats. Recently, some 
researchers have begun to attempt to build new static 
detectors by utilizing machine learning and statistical 
technique. In general, the machine learning based 
detectors could make the detection become fuzzy and 
flexible, which are extremely good at discovering 
variants of existing maliciousness as well as unknown 
threats. Such systems are always proposed as front-end 
filter for large scale analysis which the filter can rapidly 
discard potential benign JavaScript and bounce the 
suspects to a back-end sophisticated analysis system 
whose detection is more accurate but seriously resource 
and time intensive. By utilizing such filters, only 
suspicious JavaScript will be analyzed in detail 
therefore the resources required for large scale analysis 
can be substantially diminished.  

In this paper, we introduce a new malicious 
JavaScript filter. Similar to previous analogous systems, 
it is a light-weight static system but equipped with new 
extracted features based on information theory, and 
new system modelling approach based on novelty 
detection (semi-supervised learning) technique. 

It is a common viewpoint that attackers use 
obfuscation on their malicious JavaScript to hide 
exploits and prevent exact rules or signature based 
systems from detecting the attack. According to this 
circumstance, most of the previous works regarded 
obfuscation as potential maliciousness and extracted 
features to characterize it. Namely, most of the 
“malicious” features that have been extracted are 
actually used to capture the obfuscation. According to 
our recent observation, this assumption was again 
validated. 

It is true that some benign JavaScript is also 
obfuscated whereas malicious JavaScript may also 
come with plaintext. However, a system we aim to 
design will be operated over large-scale to detect 
suspicious JavaScript within a large amount of web 
page documents, therefore we only focus on the general 
viewpoint, namely the maliciousness always comes 
with obfuscation, but not partial exceptions. In addition, 
one could tune the sensitivity of our system by feeding 
different parameters. For example, according to the 
scenario of deploying our system as a front-end filter, 
the false-positive (false alarm) is less expensive as it 
only results in waste of resources whereas false-
negative (miss detection) will incur exposure to 
malicious JavaScript and hence it is more critical. 
Under such situation, one may wish to tune the system 

to minimize the false-negative so that the system will 
aggressively judge a given JavaScript as obfuscation. 
Our system satisfies this requirement well, which 
allows to be tune into the mode of favoring false-
negative, while giving low false-positive rate. 

II. RELATED WORK 
The machine learning and data mining technique is 

becoming more and more common for detecting 
network maliciousness. For instance, in the domain of 
network intrusion detection, machine learning 
classifiers such as SVM, neural network and cluster 
technique have been used as common tools to conduct 
outlier detection. On the other hand, in the field of 
detecting malicious programming codes, as most of the 
programming codes can be processed as pure text 
streams, or natural languages, it is feasible to utilize 
document processing techniques to characterize the 
malicious codes and conduct the classification. Under 
such background, the following related investigations 
have been proposed. 

A. Support Vector Machine (SVM) based detection 
systems 
Davide et al.[1] proposed a fast filter based on SVM 

to detect maliciousness including malicious JavaScript 
in web page documents over large scale, which their 
motivation and background of investigation is very 
similar to ours. They pointed out the weaknesses of 
traditional rule-based detection systems as well as the 
need of a fast maliciousness filter. By using SVM, their 
new static system achieved elastic and fuzzy detection 
so that their detection rate approximated to the 
sophisticated systems while kept the advantage of time 
and resource efficient. Other analogous SVM-based 
systems such as [2, 3, 10] which used for directly 
scanning malicious JavaScript have also been 
introduced. Within these investigations, researchers 
extracted a ton of rough and direct ‘malicious’ features 
without evaluating their effectiveness and caring the 
seriously increased amount of features, and attempt to 
cover all possible malicious behaviors with these trivial 
features, hence most of these features are not to be 
guaranteed to have low redundancy and high robustness. 
For instance, in [1, 2], researchers admitted that their 
features may have potential robustness problem. On the 
other hand, the great numbers of trivial features also 
incurred increasing of dimensions of feature vectors for 
describing data points (e.g. in [2], there are 65 features 
and in [10], there are more than 150, compare to our 7 
features) which definitely downgrade the running speed 
of machine learning classifier as well as waste of 
system resources. In addition, inefficient features may 
also bring additional noises and confuse the classifiers 
to carry out a worse detection result. 

According to the discussion above, it is necessary to 
do concentration and refining in order to reduce the 
dimensions of features without sacrificing the accuracy 
of detection. This is also a common task called “feature 
extraction” in machine learning, which requires the 
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extracted features are concentrated and as less as 
possible.  

B. Approach based on frequency 
Although [4, 5] proposed similar SVM-based 

detection systems, they introduced a new way to extract 
features of obfuscation based on frequency. They 
realized the discrepancy on frequencies of text 
characters between obfuscation and non-obfuscation 
and consequently tried to measure such distinctions by 
directly comparing the observed frequencies, or utilized 
Shannon entropy to give a conclusion of such 
distinctions in overall. Their results showed that such 
frequency-based approach is a feasible way to conduct 
detection. 

However, to straightly compare frequency of each 
character, one has to calculate and process over the 
frequency values of all 94 text characters of JavaScript, 
indicates the same amount of dimensions of feature 
vectors for describing data points, which also cannot 
achieve time and resource efficiency. In addition, this 
approach could be very sensitive to the observed 
frequencies  and probably cause over-fitting. For 
instance, we need to collect samples of non-obfuscation 
as the training data to feed the classifier so that the 
classifier could know how to recognize the non-
obfuscation. However, the observed frequencies of 
some rare text characters in non-obfuscated JavaScript 
may be strongly depend on the non-obfuscation 
samples collected which may not comprehensive 
enough to describe the general frequencies of these 
characters in non-obfuscation so that the over-fitting 
will occur. Such over-fittings will mislead the classifier 
to make the classification results become unreliable. 

On the other hand, only relying on Shannon entropy 
is completely not enough.   

C. Our improvement 
In order to improve previous systems, we introduce 

new feature extraction approaches based on 
information theory, which each of these new features is 
more concentrated and have high robustness since these 
features capture the integral ‘statistical behaviors’ of a 
JavaScript but not depend on any trivial and facial 
‘malicious’ feature. 

As a direct result, comparing to previous 
investigation, we reduce the amount of features to 7 and 
hence the operation of machine learning classifier will 
be conspicuously accelerated and will cost less system 
resources due to the reduction of dimensions of feature 
vectors. We achieved this goal while still keeping high 
detection rates. 

On the other hand, nearly all of the previous works 
did not focus much on selection of machine learning 
classifiers and most of them utilized ordinary two–class 
SVM adjusted with “optimal” parameters gained from 
grid search. However, according to the customization 
of obfuscation programs and the obfuscation do not 
need to have any unified grammar restraint, even if 

obfuscation is distinct from most of non-obfuscation, 
each two unique obfuscation can be still very different 
so that assuming all or most of obfuscation belong to 
one single class and implement two-class SVM may not 
be suitable. Therefore it will be more precise to regard 
obfuscation as outliers compared to the non-
obfuscation class. We will present our results to prove 
the correctness of this argument below. According to 
such condition, we propose a novelty detection 
approach which utilizing one-class SVM for detection, 
which fits this situation much better than two-class 
SVM. In addition, to train a one-class SVM, only 
samples of normal class (i.e. non-obfuscation) are 
needed, which solves the problem of unbalance data: it 
is easy to collect a large amount of non-obfuscated 
JavaScript samples by crawling over the Internet 
whereas the obfuscation samples are relatively very few 
due to their rare occurrences and very short life time. 
The unbalance data is also a problem that none of the 
previous investigations could solved. 

III. METHODOLOGY 

A. Classification of JavaScript 
1) Non-obfuscation: JavaScript without any 

further process or only been minimized in order to 
decrease its length and accelerate webpage loading. 
Minimization always involves deleting the space 
characters; substitute long function names and so on. 
By a glimpse, compared to obfuscation, non-
obfuscated JavaScript is much more similar to English 
texts. 

Fig. 1. An example of non-obfuscation JavaScript 
2) Obfuscation: One may utilize varied algorithms 

to pack JavaScript by replacing the original code with 
other characters. The most significant feature of 
obfuscation is the existence of a heavily obfuscated 
payload contained in such script, which is a random 
combination formed by meaningless text characters. 

Fig. 2. An example of obfuscation with an obfuscated ASCII 
encoding payload.     

B. The characteristic of obfuscation 
The most obvious feature of obfuscation compared 

to non-obfuscation is un-readable: an obfuscated 
payload does not need to obey any grammer rule of 
natural languages or the standard JavaScript as long as 
the payload could actually hide the maliciousness from 
the detection. The “un-readable” is mainly reflected in 
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the abnormal frequencies of text characters in 
obfuscation and will cause the difference of observed 
frequencies of most characters between obfuscation 
and non-obfuscation. For instance, many obfuscated 
payloads usually contain many rare text charactors 
such as punctuator “%”, “/” and upper case letters, 
which usually have very few appearances in the case 
of non-obfuscated JavaScript. In addition, as a special 
case of abnormal observed frequencies, many 
obfuscation programs work in a way of tautologically 
producing similar text strings to form the building 
blocks of the entire obfuscation payload so that such 
payloads always contain large amount of several 
specific repeated text characters (e.g. the punctuator 
“%” and number “2” in Fig.2), which results the 
observed frequencies of such characters significantly 
higher than others since the size of the obfuscation 
payloads always account for a very large proportion of 
the intergral JavaScript. Whereas in the case of non-
obfuscation, the entire probability distribution of text 
charactors will be relatively close to uniform due to the 
restraints of English and programming grammar. We 
name this phenomenon as “repeated patterns”. 
Logically, the appearance of “repeated patterns” will 
definitely giving the arising of the abnormal observed 
frequencies but not vice versa.  

C. Support vector machine 
1) Overview: SVM is a model in pattern 

recognition which is used for classification and 
regression around the data sets. Intuitively, for 
classification, SVM looks for a hyper-plane in feature 
space as the boundary to separate the data points.  

2) One-class SVM: In this investigation, we 
implement one-class SVM: a classifier that is always 
utilized to detect novelty such as network intrusion. 
One-class SVM is a modification of ordinary two-class 
version, proposed by Scholkopf et al. in [9].  

To train a one-class SVM, only normal samples are 
needed to form one normal class and any new input 
point will be either classified into this normal class and 
labelled as a normal point, or outside this class as an 
outlier. Intuitively, one maps a set of normal training 
data points into a feature space by a kernel function and 
initially regards the origin of the feature space as the 
only outlier. Then by using slack variables, one could 
separate the image of the normal class S, which is a 
class that includes most of the mapped training data 
points from the origin by a hyper-plane with maximum 
margin in order to estimate a discriminant function f 
which is positive on normal class S and negative on 
any point who is outside S. S is a small cluster with a 
simple geometric shape capturing most of the normal 
training data points.  

For instance, assume x1, x2,..., xn are training data 
points which all belong to the normal class S. Φ(x) is a 

set of basis functions that map the training data points 
to a feature space. To separate the training data from the 
origin, which is the original outlier, the following 
quadratic programming problem needs to be solved, 
which is very similar to the case of ordinary two-class 
SVM: 

min 1
2

||w||2 + 1
vn
∑ ξi –  ρn

i=1  (1) 

subject to   (w∙Φ(xi)) ≥ ρ – ξi for i=1,……, n;  ξi≥0 

The first term of the objective function penalizes 
complexity of the geometric shape of S while the 
second term penalizes the cost of errors caused when 
discriminant function f(x) is negative on the training 
data points of normal class by using slack variables ξi 
to allow some training data points lie on the wrong side 
of the hyper-plane as outliers. The parameter v 
represents an upper bound on the fraction of data that 
may be outliers. Solve this problem with respect to w 
and ρ could gain the definition of hyper-plane w • Φ(x) 
– ρ = 0 and the discriminant function f(x) = sign ((w • 
Φ(x)) – ρ). 

D. Information-theoretic measures for extracting 
features. 
For mining new features of obfuscation and non-

obfuscation, we consider an application of measures 
from information theory so that a given JavaScript can 
be statistically characterized well by such measures. 
We then use discrepancies of these characteristics for 
classification between obfuscation and non-obfuscation. 
The calculation of these measures are based on unigram. 
Intuitively, we regard an input JavaScript as a text 
stream and assume characters of the stream are 
observed values generated from an identical random 
variable X, which takes values from 94 text characters 
of JavaScript. 

The information-theoretic measures under 
consideration in this paper include several kinds of 
entropy and divergence (distance) (see [14] for various 
and important results in information theory) and they 
could be classified into two classes according to their 
motivations. Meanwhile, our approach also can be 
regarded as an extension of previous Unigram systems 
mentioned above. The first class includes entropy 
measures defined by one probability distribution, which 
are used to extract features of uncertainty of an input 
JavaScript. In previous investigations, Shannon entropy 
has been shown as an effective measure to detect 
obfuscation and we extend the entropy approach by 
introducing two more entropy measures: collision 
entropy and approximation of Shannon entropy. 
Theoretically, the entropy measures could only detect 
the abnormal uncertainty (i.e. repeated patterns) but 
can’t be ensured to be able to discover the abnormal 
frequencies of text characters. For instance, to calculate 
Shannon entropy on the two text strings “setInterval” 
and “%20EW_DC%38” will give exactly the same 
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entropy value but it is obvious that the latter one is more 
likely to be obfuscation as it contains many rare 
characters such as “%” and upper case letters. The 
second class includes distance measures: Kullback–
Leibler divergence, Bhattacharyya distance and 
Euclidean distance, which are defined by two 
probability distributions. Be different from the entropy 
measures, the distance measures compare the observed 
frequencies of each text character respectively in 
obfuscation and non-obfuscation hence they can be 
used to detect any kinds of abnormal observed 
frequency phenomenon but not limited to “repeated 
patterns”. On the other hand, unlike previous Unigram 
systems which straightly comparing the frequencies of 
all 94 characters (i.e. 94-dimensional vectors), the 
distance measures allow us to conveniently and 
explicitly present the results of frequency comparisons 
between probability distributions in overall with scalar 
values. Overall, we can expect improvement of the 
previous results obtained by Shannon entropy and 
direct frequency comparison by using these new 
measures. 

 In addition, compare to previous Unigram systems, 
our method is relatively insensitive to the over-fitted 
observed frequencies. Even if there could be some over-
fitting existing, since the calculation of each of our 
metric involves the frequencies of all text characters 
and give an overall evaluation with a single scalar value, 
hence the influence of few over-fitted observed 
frequencies can be mitigated. 

1) Shannon entropy:  In information theory, 
Shannon entropy measures the uncertainty of a random 
source (i.e. a probability distribution). Essentially, 
Shannon entropy is the expected value of the amount 
of “information”, where the term “information” is 
defined as the negative logarithm of the probability 
values. In existing investigations, Shannon entropy has 
been utilized to identify malicious randomness. 
However,nearly all of them didn’t give out a 
systematical depiction on its effectiveness of detecting 
obfuscation. In this investigation, we reused it as one 
of our measures, as well as comparing its effectiveness 
with other new measures we proposed. 

According to our experiment, Shannon entropy is 
indeed helpful for detecting obfuscation as it is able to 
detect the appearances of repeated patterns that form the 
obfuscation payload. Intuitively, the several repeated 
text characters that are used to form the obfuscation 
payload will have significantly higher observed 
frequencies than others, which will result a lower 
Shannon entropy value compared to the case of non-
obfuscation, whose observed frequencies of text 
characters are relatively close to uniform and will cause 
a higher Shannon entropy values. 

For a random variable X, the Shannon entropy H(X) 
is defined by 

H(X) = –∑ p(x)log2p(x)x  (2) 

where the probability distribution p(x) is associated 
with X. In our system, p(x) is calculated by the observed 
frequency of a text character.  

2) Kullback–Leibler(K-L) divergence: The K-L 
divergence DKL (Q||P) or DKL (P||Q) measures the 
difference between two probability distributions P and 
Q. In our experiments, we utilized it to measure if the 
probability distribution formed by observed 
frequencies of a given JavaScript is close to the 
“benign distribution”(see Section III-D), which is a 
probability distribution that describes the statistical 
feature of a standard non-obfuscation. If so, it implies 
that  the given JavaScript has a similar frequencies of 
characters to the standard non-obfuscation JavaScript 
defined by “benign distribution” which could become 
one of the evidences that we could classify the given 
JavaScript as non-obfuscation. Since the K-L 
divergence is a non-symmetric measure, we calculate 
both DKL (Q||P) and DKL (P||Q) through  the following 
definition: 

                    DKL (P||Q) = ∑ p(x) log2
p(x)
q(x)x    (3) 

DKL (Q||P) = ∑ q(x) log2
q(x)
p(x)x  

where P and Q denote the “benign distribution” and the 
observed distribution of the given JavaScript 
respectively (usage of P and Q will be same below).   

3) Approximation of Shannon entropy: We 
introduce an approach to approximate Shannon 
entropy based on asymptotic equipartition property 
(AEP). If (x1,x2,……,xn)  is an independent and 
identically distributed (i.i.d) sequence according to a  
probability distribution p(x), then we have: 

lim
n→∞

– 1
n

log2p(x1,x2,……,xn) → H(X)  in probability (4) 

We next define the notion of the typical set: An i.i.d 
sequence (x1,x2,……,xn)will be included in the typical 
set Aε

(n)  if its probability satisfies the following 
inequality:  

 H(X) – ε ≤ – 1
n

log2p(x1,x2,……,xn) ≤ H(X)+ε (5) 

where ε is an arbitrarily small value. An important 
property of typical set includes that we have Pr{Aε

(n)} > 
1 –  ε , if n is sufficiently large. 

We assume that the input JavaScript 
(x1,x2,……,xn) is long enough and hence it belongs to 
the typical set. By assuming the input is non-
obfuscation, we calculate the probability 
p (x1,x2,……,xn)  of the input JavaScript by using 
“benign distribution” (i.e. the value of each p(xi) is 
taken from the “benign distribution” where i =1,….,n) 
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so that the probability value calculated indicates the 
chance of occurrence of the input JavaScript as a 
standard non-obfuscation. Then we evaluate [– 1

n
 log 

p(x1,x2,……,xn)]. By AEP, since we have assumed the 
input is a non-obfuscation, the value would approach 
to the Shannon entropy of the standard non-
obfuscation, which can be calculated by “benign 
distribution”. Otherwise the input is not a member of 
the typical set. However, based on the property of 
typical set mentioned above, the probability of an 
observed i.i.d sequence does not belong to typical set 
is negligible so that the input (x1, x2,……,xn ) then 
should be generated from another probability 
distribution which differs from “benign distribution” 
and belongs to its typical set. Therefore, we can 
determine if the value [– 1

n
 log p(x1,x2,……,xn)] of the 

input approaches to the Shannon entropy of “benign 
distribution” by evaluating the absolute difference of 
these two values, to indirectly identify the similarity 
between the underlying probability distribution of the 
input JavaScript and “benign distribution”. The input 
(x1, x2,……,xn) is considered to be suspicious once its 
underlying distribution is conspicuously different from 
the “benign distribution”. 

Even if this approach is categorized as an 
uncertainty measure, it essentially evaluates the 
difference of observed frequencies between two 
JavaScript and behaves like a distance measure, so that 
unlike other uncertainty measures, it can be used to 
detect all kinds of abnormal observed frequencies but 
not only “repeated patterns”. Compare to the distance 
measures such as K-L divergence, which 
straightforwardly compares the frequency values, the 
AEP approach examines if the times of appearances of 
each characters match the times it “should” have in a 
non-obfuscation, which indicates an indirect way to 
compare frequencies. Intuitively, for an input 
JavaScript, if most of the text characters have the 
“correct” times of appearances, then the value [– 1

n
 log 

p( x1,x2,……,xn )] will actually approach to the 
Shannon entropy value of the “benign distribution”.  

4) Bhattacharyya distance: Similar to K-L 
divergence, the Bhattacharyya distance is also a 
measure for evaluating difference between two 
probability distributions P and Q over a finite set, it is 
defined by 

DB(P,Q)= – ln(∑ �p(x)q(x)x ) (6)  

5) Collision entropy: The collision entropy is 
defined by 

             H2(X)= – log∑ p(x)2
x  = – logP(X=Y) (7) 

where random variables X and Y are given as 
independent and identically distributed according to a 
probability distribution p(x). 

Except Shannon entropy, collision entropy is 
another kind of expression of the uncertainty of text 
characters. According to the characteristic of “repeated 
patterns” discussed above, the minority of text 
characters who have very high observed frequencies 
will cause a large collision probability P(X=Y) and 
results to a lower collision entropy, whereas in the case 
of non-obfuscation, the observed probability 
distribution would be relatively close to the uniform 
distribution which results in a higher collision entropy. 

6) Euclidean distance: The Euclidean distance can 
be also utilized as a measure to evaluate difference 
between two probability distributions. It is defined by 

           d(P, Q) = d(Q, P) = �∑ (q(x) -p(x))2
x  (8) 

E. Benign distribution 
We calculate several distance measures to inspect if 

the input JavaScript is statistically close to the standard 
non-obfuscation. By using samples from non-
obfuscation training data set (See section IV-B) we 
collected, we introduce the “benign distribution” to 
model the standard non-obfuscation. Intuitively, 
“benign distribution” is an empirical probability 
distribution that describes the frequency of occurrence 
of each text character in our samples of non-obfuscation 
training data set.  Each probability value p(x) of “benign 
distribution” is obtained by calculating the weighted 
average of frequency of each text character in 
JavaScript. For example, for a certain text character x, 
we calculate p(x) by the following formula 

p(x) = ∑ C
T

∙freq(x)n  (9) 

Where T denotes the total text length of all non-
obfuscation samples within the data set; C denotes the 
length of a specific non-obfuscation sample in which 
the text character x occurs, freq(x) indicates the 
frequency of x observed in this non-obfuscation, and n 
counts the number of samples that x occurs. 

IV. EXPERIMENTS AND RESULTS 

A. Sample data collection 
We crawled the main pages of sites of Alexa “The 

top 500 sites” URL list[13] since December, 2014 and 
collected 2000 unique non-obfuscation samples. We 
also obtained 400 unique obfuscation samples from 
VirusTotal[11] and D3M 2010-2013 data sets[12]. 
Note that the obfuscation samples are not ensured to be 
malicious themselves but definitely suspicious as they 
were actually located within malicious HTML pages 
and heavily obfuscated. We discarded any JavaScript 
that less than 250 bytes, as their length is too short to 
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reveal the frequency features. For all samples, we 
manually sieved to ensure there is no repeat. 

B. Constructing the classifier 
The one-class SVM model is built and trained 

through the LIBSVM package with R language, with a 
Radial basis function kernel and 10 cross validations. 
We randomly selected 300 non-obfuscation samples as 
training data (normal class) to train one-class SVM, 
and used the rest of non-obfuscation samples and all 
obfuscation samples as test data. 

 

C. Results of calculations: 
We compared calculated values of 7 measures we 

selected, around three data sets: Non-obfuscation 
training data, Non-obfuscation test data and 
Obfuscation test data. Fig.3 depicts a part of the 
comparisons. 

 Overall, we found that the values of measures of 
non-obfuscation samples in most cases are much stable 
and concentrated while the values of obfuscation are 
wild and random. Intuitively, most of the non-
obfuscation samples are “similar” and gather within a 
cluster while the obfuscation samples are randomly 
located outside this cluster. Such results proved our 
assumption of obfuscation are outliers but not belong 
to one single class. 

Fig. 3. Comparisons of values of Shannon entropy and 
approximation of Shannon entropy between three data sets 

 
We also visualized the original 7-dimensional data 

in 3-dimensional space through Classical 
Multidimensional Scaling. Multidimensional scaling 
(MDS) is an approach to visualize the similarity of a 
set of high dimensional points. Of particularly, the 
classical MDS relocates the high dimensional points 
into 2 or 3-dimensional space while the Euclidean 
distance between each two points in original space are 
preserved as well as possible. As can be seen in Fig.4, 
the locations of data points indicates a “Normal class 
Versus Outlier” scheme. 

 

Fig. 4. Mapping original 7-dimensional data space into 3 
dimensional coordinate by using classical MDS. Red plots 
indicate obfuscation  while blue indicates non-obfuscation. 

D. Training and test results 
In order to test the effectiveness of each measure, 

we firstly trained the one-class SVM classifier by only 
utilizing each single measure to conduct the detection 
on three data sets and evaluated the accuracies. The 
results are shown in Fig.5. 

As can be seen, each of our measures can 
individually be feed to a single classifier for detection 
where most of these classifiers gave good detection 
accuracies on non-obfuscation data while their results 
on obfuscation data set are middling. Namely, each of 
them is a weak classifier. From the figure, we could 
also compare the effectiveness of each measure. 
Especially, for detecting obfuscation, compare to 
Shannon entropy, which has been utilized within 
previous investigations, 4 of our new measures: K-L 
divergence DKL (Q||P) and DKL (P||Q), AEP entropy 
approximation and collision entropy averagely 
performed better, while the Euclidean distance has the 
similar performance to the Shannon entropy. It is also 
interesting to note that the statistical distance measures 
averagely have better performances compare to 
uncertainty measures, therefore it justified the fact 
foregoing mentioned above that distance measures 
could capture all kinds of abnormal observed 
frequencies whereas uncertainty measures are only 
able to detect the “repeated patterns”, which is only a 
special case of the phenomenon of abnormal observed 
frequencies so that they are less effective compared to 
distance measures. 

Fig. 5.  Comparing effectiveness of measures  

Then we combine these weak classifiers to one 
single strong classifier by feeding all of 7 features to a 
one-class SVM. The final detection accuracy of this 
combined system is shown in Table.1. According to the 
foregoing discussion, one may want to tune our system 
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to minimize false-negative hence the accuracy tests are 
conducted under different conditions. The balance 
mode considers the tradeoff between false-negative 
and false-positive, while mode of minimizing false-
negative favors false-negative as much as possible. 
Under balance mode, we respectively utilized all 7 
features as well as only the top 4 effective features 
ranked by the results of Fig.5, which are K-L 
divergence DKL (Q||P) and DKL (P||Q), AEP entropy 
approximation and collision entropy, to conduct the  
test twice.  
TABLE I.   FINAL ACCURACY RESULTS ON THREE DATA SETS  

E. Time consumption 
 We utilize all of our samples for testing if our 

system is time efficient. The test is conducted on a 
machine running Window7 Professional 64 bits, with 
Intel Xeon CPU E3-1225 CPU and 16GB RAM. We 
used build-in function “clock()” in C and “proc.time()” 
in R language to surround our feature extraction and 
classification programs to measure the time cost. 

The test results are shown in Table.2. Note that the 
values are the total time to process the entire sample 
set but not time per sample. By evaluating the results, 
it is clear that our system is fast which is able to 
conduct large scale analysis. 

TABLE II.   TEST RESULTS OF TIME CONSUMPTION 

V.  CONCLUSION AND FUTURE WORK 
Our new filter system significantly reduced the 

dimensions of feature vectors while still giving high 
accuracies for classifying obfuscation and non-
obfuscation. According to the fact that our measures do 
not count on specific and ambiguous ‘malicious’ 
behaviors, as well as the results of Fig.5 and Table.1, 
we showed that these measures have high robustness. 
We also justified the correctness of our modelling 
approach of novelty detection based on the results of 
data points distribution performed by Fig.3 and Fig.4, 
in which the non-obfuscation samples behave strong 
similarity and their values of measures always resemble 
while the obfuscation samples are randomly located 
outside the cluster of non-obfuscation. To sum it up, our 
systems performed high accuracies with practical time 
and resource, which can be operated over large scale 
smoothly. 

On the other hand, as the detection of our system 
completely counts on the observed frequency and 

appearances of text characters of  a given JavaScript, 
which requires the input JavaScript has to be long 
enough to reveal its real features of frequency. 
Therefore our system is not effective to inspect scripts 
that are too short and hence we made a threshold of 
minimum text length of 250 bytes in our experiment. 
Fortunately, short malicious obfuscation is rare.  

Since our system only inspects obfuscation, one 
may have to combine our system to others to conduct a 
comprehensive detection of maliciousness, hence it will 
be necessary for us to test the compatibility of such 
combinations. On the other side, we will continue to test 
our system on other data sets as well as extension of our 
approach to detect other malicious codes. 
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         Data set 
 
Mode 

Obfuscation test 
data 

Non-
obfuscation  
test data 

Non-obfuscation 
training data 

Balance 96.20% 97.78% 97.01% 
Balance 
(top 4 features ) 

95.50% 97.72% 97.67% 

Minimizing 
false-negative 

99.25% 81.42% 83.06% 

Target of test Feature extraction time Classification time 
2000  
non-obfuscation 
samples 

2.029 seconds 0.04 second 

400 obfuscation 
samples 

0.917 second Less than 0.01 second 
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