
難読化されたスクリプトにおける特徴的な構文構造のサブツリー・マッチ

ングによる同定

ブラン グレゴリー † 秋山 満昭 ‡ 宮本 大輔 § 門林 雄基 †

†奈良先端科学技術大学院大学 情報科学研究科
〒 630-0192 生駒市高山町 8916-5

{gregory,youki-k}@is.aist-nara.ac.jp

‡NTT情報流通プラットフォーム研究所

〒 108-8585 東京都武蔵野市緑町 3-9-11

akiyama.mitsuaki@lab.ntt.co.jp

§東京大学 情報基盤センター
〒 113-8658 東京都文京区弥生 2-11-16

daisu-mi@nc.u-tokyo.ac.jp

あらまし 悪意のあるウェブサイトを解析する研究は，サイトが難読化されたスクリプトを用いている場合

に悪意があるとみなす傾向にあるが，難読化は必ずしも悪意を持って用いられてはいない．本研究ではスク

リプトから学習した構造を部分木検索することによって，悪意のあるスクリプトに利用される難読化と，そ

うでない難読化についての分類手法を提案する．本手法は，情報量の増加を抑制するために抽象構文木を

用い，頻出する木構造を探索して学習を行う．また，抽象構文木の同定を行う検査では，プッシュダウン・

オートマトンを用いた，複数の木構造の部分木検索を試みる．このように自然言語処理及び文字列処理の

技術を用い，分類結果を考察する．

Identifying Characteristic Syntactic Structures in Obfuscated

Scripts by Subtree Matching

Gregory Blanc† Mitsuaki Akiyama‡ Daisuke Miyamoto§
Youki Kadobayashi†

†Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, JAPAN

{gregory,youki-k}@is.aist-nara.ac.jp
‡NTT Information Sharing Platform Laboratories

3-9-11 Midorimachi, Musashino, Tokyo 180-8585, JAPAN
akiyama.mitsuaki@lab.ntt.co.jp

§Information Technology Center, The University of Tokyo
2-11-16 Yayoi, Bunkyo, Tokyo 113-8658, JAPAN

daisu-mi@nc.u-tokyo.ac.jp

Abstract Many approaches to web malware detection tend to consider obfuscated scripts as malicious,

although it is has been demonstrated that obfuscator does not indicate malice. In a bid to distinguish

obfuscation techniques used in malicious and benign scripts, we propose a subtree matching technique to

identify learned structural patterns in analyzed scripts. Our proposal implements two techniques from the

realm of natural language processing and string algorithms. We advocate the use of abstract syntax trees

to reduce the entropy introduced by string randomization and rather focus on code structure patterns. In

a learning phase, we discover frequently occurring trees in abstract syntax treebanks, while in the testing

phase, we attempt to identify these trees within a candidate AST by using a pushdown automata that

accepts the set of learned trees.

Computer Security Symposium 2011
19-21 October 2011

- 468 -

1 Introduction

Though obfuscation in scripting contents has been

studied for some time now, it still remains a diffi-

cult task to reverse it. Of course, simple schemes

can easily be defeated by hooking critical sinks

and executing the then-modified program. How-

ever, more advanced and sophisticated techniques

increase the complexity of the output to the point

where some obfuscated contents need to be brute-

forced. Obfuscation is further hardened through

the use of redirection techniques: obfuscated con-

tents are not provided as a single piece of code

to reverse but are often scattered among several

files and origins, the original script rebuilding itself

through several layers of deobfuscation and linking.

Readers not familiar with the matter of obfusca-

tion in web scripting languages can refer to a sur-

vey of obfuscation schemes[1] and this taxonomy

compiled by Collberg et al.[2] where obfuscating

transformations are divided into 3 main categories:

layout obfuscations which remove formatting in-

formation from the source code; data obfuscations

which obscure data and data structures (storage,

encoding, aggregation or ordering); control-flow ob-

fuscations which affect the aggregation, ordering or

computations of the flow of the code. We are fo-

cusing on the last two types. What we propose

is to identify these obfuscating transformations by

exhibiting characteristic structures only found in

these.

As an example, let’s take the well-known Dean

Edwards’ packer which is used among both benign

and malicious scripts. Even though it is insufficient

to detect it to decide on the dangerosity of a script,

we believe it is still important to acknowledge its

existence within a script, and so is for other kinds

of obfuscating transformations more likely to oc-

cur in malicious scripts or in benign scripts. The

Dean Edwards’ packer is easily recognizable by its

signature:

eval(function(p,a,c,k,e,d){

e=function(c){

return(

However, what if someone tweak the code to obtain

a different signature than p,a,c,k,e,d. Would

the current detection systems still acknowledge its

presence? On the other hand, this packer performs

some operations that are well-known to security

analysts and the part of the structure of the ab-

stract syntax tree (AST), resulting from parsing

the packer, can be captured. In particular, the pre-

vious signature can be abstracted to the following

(extended signature in prefix notation:

CALL eval CALL FUNC ASSIGN ID FUNC RET

Such representation allows us to capture different

layers of nesting as well. In this paper, we ex-

plain the different algorithms and steps taken to

build an automaton able to capture several of such

structures at a same time.

2 Related Works

The issue of obfuscation is rarely raised and was

almost considered an artifact of malicious contents.

As a testament of such way of thinking, we can

point out two notable papers on the seldom dealt-

with issues of obfuscation in JavaScript code.

In [3], the authors have observed that malicious

web pages include obfuscated code used to cir-

cumvent signature-based detection systems. The

authors have designed three metrics (byte occur-

rence, entropy, word size) to distinguish obfuscated

strings from deemed benign unobfuscated ones. How-

ever, they recognize that obfuscated JavaScript is

not itself a good indicator of malice. They only

identified 6 different obfuscation patterns. Oddly

enough, their method was not able to detect an

eval unfolding string as obfuscated.

In [4], the authors clearly assumed that obfus-

cated strings are malicious in most of the cases.

They proposed a machine-learning-based classifica-

tion technique. With an overall number of 65 fea-

tures, including 50 JS keywords and symbols, they

came up to the conclusion that human-readable

features perform better and considered reinforcing

these in priority.

Contrary to these related works, we are not con-

sidering the obfuscated string itself, but rather the

- 469 -

obfuscated string as an output of an obfuscating

transformation or a combination of obfuscating trans-

formations, often implemented as automated tools.

This is not a method for deobfuscation though.

3 Proposal

We propose to circumvent the issue of (tokenized)

string matching by capturing the structure of the

program through its parse tree. Since we wish to

know about characteristic structures of obfuscating

transformations, we propose to mine frequently oc-

curring subtrees in a treebank. Eventually, we will

be able to gain knowledge of the structures of ob-

fuscating transformations and then use this knowl-

edge to identify such structures in future datasets.

3.1 AST Representation

Since we are concerned with reducing the en-

tropy of script contents for the purpose of analysis,

it became necessary to abstract the script code in

order to get rid of the randomization introduced

in the identifiers and values. An accurate and ab-

stract representation of a program is the abstract

syntax tree. However, the AST used here is differ-

ent in some aspects:

• values are not kept and replaced by generic

types: NUM for numeric values, STR for string

values, ID for identifiers;

• some identifiers for core objects and functions

are preserved in order to make explicit oper-

ations such as overriding or aliasing of core

components;

• conditions of branching and looping are not

preserved and the whole construct is replaced

by a couple 〈S , I〉 where S represents a symbol

(either BRANCH or LOOP) and I the set of

instructions that form the body of the branch

or loop;

• all instructions in a block are represented at

the same level by sibling nodes, children of a

node representing the containing block (which

図 1: An automaton accepting all the subtrees is

built.

can be a branching control, a loop, a function

definition, etc.).

Moreover, we are not tokenizing the AST repre-

sentation as it has been done for pattern matching

purpose in [5] but we focus on the properties of

tree-like structures.

3.2 Subtree Matching by PDA

After discovering frequent recurring subtrees ap-

pearing in a learning dataset (or treebank), we will

build transition rules from the learned subtrees

(Fig. 1. The objective is to quickly identify the

learned subtrees in the script being analyzed. The

analyzed script, transformed into an AST, is fed to

a pushdown automata, which is analogous to a fi-

nite state machine with a stack. This technique has

been proposed by Flouri et al.[6] as an output to

a new discipline of research dubbed arbology [10],

which aims to apply or adapt algorithms on strings

and sequences (also known as stringology) to the

field of tree structures. Stringology made use of

finite state machine as the model of computation

and this naturally yielded to the use of pushdown

automata towards trees, since the addition of the

stack accomodates recursion.

Constructing a deterministic pushdown automata

- 470 -

図 2: Each JS file is transformed to an AST and

then to its prefix notation.

accomodating a set of subtrees is done in three dis-

tinct steps:

1. construction of a PDA accepting a set of sub-

trees in their prefix notation

2. construction of a nondeterministic subtree match-

ing PDA for a set of subtrees in their prefix

notation

3. transformation of the nondeterministic sub-

tree matching PDA to an equivalent determin-

istic PDA

Each step employs well-know PDA construction

algorithms which are further detailed in [6]. In

this research, we implemented a script that parses

an XML file listing frequently occurring subtrees

and generates the transition rules for the deter-

ministic subtree matching PDA. We also modified

a program emulating a finite state machine to ac-

comadate a stack. This program would parse the

file containing the transition rules, as well as a file

containing the script to be analyzed. The script to

be analyzed is transformed into an AST and then

expressed as a prefixed string (see Fig. 2) which

is passed as input string to the subtree matching

PDA. Whenever, there is a match, the matched

subtree is reported allowing to identify character-

istic subtree as the script’s AST is browsed.

4 Experiment

In this section, we briefly expose the settings

of our experiment and explain its implementation.

The results are displayed in a straightforward man-

ner and commented thereafter.

4.1 Data Preprocessing

MWS2011 D3M datasets[7] are composed of 3

pcap files spanning the period of 3 days during

February 2011. Each file features several HTTP

conversations. An HTTP conversation takes place

between the user agent (the browser) and one or

several web pages (belonging to the same or dis-

tinct origins) during the span of a same browsing

session. By definition, an HTTP conversation is

constituted of several HTTP transactions (request

and response).

Once we have been able to disambiguate the con-

versations, we apply a script to reconstitute JS

files scattered among several origins or pages. The

script takes each HTTP transaction individually,

extract the JS contents and follow the linked con-

tents through consecutive transactions. This al-

lows us to recover fragmented scripts as a single

file.

By such processing, we were able to recover over

60 files for Day 1, 82 for Day 2 and 116 for Day

3. As a mean of comparison, we also included a

randomly handpicked dataset composed of trans-

actions towards 25 domains of Alexa top 100. This

last datasets is comprised of around 150 files.

4.2 Overview

The experiment is roughly divided between a

learning and a testing phase. The learning dataset

will provide subtrees to be matched on later datasets

during the testing phase. Day 1 has been designed

as the testing dataset. Due to time constraints,

we settled for picking subtrees manually instead of

an automated way. More details about such choice

are provided in Section ??. We selected 35 subtrees

from Day 1 ASTs ranging from 3 to 43 nodes, rep-

resenting 1 to 3 instructions and 1 to 3 layers of

nesting. Obviously, the longer the more specific.

These 35 subtrees were stored as ASTs in an

XML file. The file was processed using the algo-

rithms referred in Section 3.2 to generate states

and transitions for our deterministic subtree match-

ing pushdown automaton. The resulting automa-

- 471 -

ton comprises 379 states (among which only 39 are

accepting) and 17057 transitions.

Concerning the other datasets (Day 2, Day 3 and

Alexa25), we generated a prefix AST notation for

each extracted JS file. These files were then in-

putted to the subtree matching PDA. Results in-

clude the number of subtrees identified (which is

nearly equivalent to the number of a time an ac-

cepting state is reached, modulo possible false pos-

itives due to the entanglement of the PDA transi-

tions), the matched subtrees, the time it took to

process the JS file (in seconds).

4.3 Results

Among the 82 scripts, of the Day 2 dataset,

passed to the PDA, 56 were found to contain one

or several occurrences of a subtree picked in the

Day 1 dataset which represents around 68% of the

scripts. For the data of Day 3, 92 scripts of the

116 extracted were found to contain subtrees iden-

tified by the PDA, which is almost 80%. On the

other hand, while confronting the data from the

Alexa25 scripts, which contain a mixture of unob-

fuscated and obfuscated benign scripts, the ratio

falls down to 50%. While this sounds to be still

high, it is to be noted that most of the accepted

subtrees are actually of two kinds, which revealed

to be the shortest subtrees, thus more likely to oc-

cur. Additionally, the distribution is heavily po-

larized between these two subtrees for the Alexa25

dataset, while Day 2 and Day 3 datasets exhibit a

more varied distribution of subtrees.

We were able to cluster JS samples around dif-

ferent type of subtree combinations: single sub-

tree, combination of subtree from the same family,

combination of subtrees from different families. A

family is a set of subtrees extracted from the same

sample at learning stage and therefore indicating

with a high level of confidence that the JS sample

contains a given obfuscating transformation when

both subtrees are found together. This rules out

cluster #22 from being a good cluster since its sam-

ples only contain a partial family (besides, the sub-

tree is only 3 nodes long which explains its com-

monness). On the other hand, clusters #01, #03

are characteristics of the Dean Edwards’ packer

since it contains all or most of the subtrees for

family A (Dean Edwards’ packer). Cluster #12

is another such good example of a identified obfus-

cations.

In terms of performance, the PDA is quite an

efficient technique. As a matter of fact, process-

ing times for scripts of Day 2 range from 0.098803s

to 0.279856s and an average of 0.10638s. For Day

3 dataset, minimum time is 0.098565s, maximum

time is 0.151935 and average time is 0.103685s. For

an average processing time barely excessing 100ms,

one must say that the PDA is quite efficient. Not

to mention that these results were obtained using

scripts written in Ruby, which is not praised for its

time performance. On the other hand, the PDA

was still tractable, and it may be possible that

it grows to thousands of states and transitions in

worst-case scenarios.

5 Discussion

The results have shown that we need to take into

consideration some subtleties inherent to automata

in order to avoid false positives.

We thought to apply data mining methods to

past datasets in order to discover the most frequent

subtrees. In fact, we started experiencing with

a tool called Varro[8] which identifies and counts

regularities in treebanks. Varro usually processes

treebanks representing syntactically-annotated nat-

ural language sentences and extract frequent induced[9]

unordered subtrees. Our method, using prefix no-

tation of ASTs, is limited to bottom-up subtrees[9],

which offers less flexibility.

Varro minimizes memory use but the worst case

memory performance isO(nm) where n is the num-

ber of vertices in the treebank and m is the largest

frequent subtree found in it. This has been the

major drawback in our attempt to automate the

discovery of frequently occurring subtrees in the

MWS 2011 datasets as some scripts can span sev-

eral thousand nodes.

- 472 -

表 1: Clusters obtained from PDA identification (partial)
Learned subtrees (35 subtrees divided in 17 families)

A B C D E F G H I J K L M N O P Q
subtrees 5 4 1 1 4 2 1 1 1 2 3 3 1 2 1 1 2
avg. nodes 13 9 6 10 7 20 12 12 22 13 7 22 44 11 10 6 11
ID Day 2 (56 samples matched) #
01 4 1 1 3
02 1 6
03 5 1 2
04 3 11
05 3 1 2
06 2 4
07 2 2
08 1 1 1 2
09 1 4
12 4 2
13 1 2
15 1 3
16 1 1 5
ID Alexa Top 100 Random 25 (75 samples matched) #
22 1 51
23 1 1 11
25 1 8
27 2 3

6 Conclusion

In this paper, we have proposed a way to re-

duce the entropy induced by string randomization

by focusing on the tree-like structures of programs

that commonly occur during parsing time. Using

an abstract syntax tree representation, we can ex-

press characteristic structures found in obfuscat-

ing transformations. We were also able to cluster

samples around obfuscating transformations (ex-

pressed as a set (or family) of subtrees) and showed

that clusters issued from benign samples are likely

to be false positives, since the size of the subtree is

too small to be characteristic by itself.

We are well aware that this is just a step towards

classification of obfuscated samples based on the

obfuscating transformations they employ. Indeed,

we need to characterize more each subtree by, for

example, assigning a grade based on their occur-

rence and length. Larger subtrees will then have

more weight than short subtrees but short subtrees

that occur consecutively a certain number times

may indicate obfuscation. Then, we can combine

several subtrees to represent an obfuscating trans-

formation (for example, in this research, up to 4

subtrees were used to represent different part of

the Dean Edwards’ packer) and then highly reduc-

ing the number of false positives.

Acknowledgements. This research is supported

by a grant from the NEC C&C Foundation.

参考文献
[1] C. Craioveanu, Server-side script polumorphism: Tech-

niques of analysis and defense, Proc. 3rd Intl. Conf. on
Malicious and Unwanted Soft. (2008).

[2] C. Collberg et al., A Taxonomy of Obfuscating Trans-
formations, Tech. Rep. #148, The University of Auck-
land, July 1997.

[3] Y.H. Choi et al., Automatic Detection for JavaScript
Obfuscation Attacks in Web Pages through String Pat-
tern Analysis, Proc. 1st Intl. Mega Conf. on Fut. Gen.
Inf. Tech. (2009).

[4] P. Likarish et al., Obfuscated Malicious JavaScript De-
tection using Classification Techniques, Proc. 4th Intl.
Conf. on Malicious and Unwanted Soft. (2009).

[5] C. Curtsinger et al., ZOZZLE: Fast and Precise In-
Browser JavaScript Malware Detection, Proc. 20th

USENIX Sec. Symp. (2011).

[6] T. Flouri et al., Aho-Corasick like multiple subtree
matching by deterministic pushdown automata, Proc.
20th USENIX Sec. Symp. (2010).

[7] M. Hatada et al., Datasets for Anti-Malware Research
- MWS 2011 Datasets, マルウェア対策研究人材育成ワー
クショップ, October 2011 (to appear).

[8] S. Martens, Varro: An Algorithm and Toolkit for Reg-
ular Structure Discovery in Treebanks, Proc. 23rd Intl.
Conf. on Comp. Ling. (2010).

[9] Y. Chi et al., Frequent Subtree Mining - An Overview,
Fund. Inf., vol.66, no.1-2, pp.161–198, November 2004.

[10] Arbology, www.arbology.org

- 473 -

