# **PWS Cup 2019** Team 004 (またぼっち, Botch Again) / Makoto IGUCHI (Kii Corporation)

### Data Anonymization

**Basic strategy:** Shift regions by N

Example: Shift a region by 2



Randomly shift the region (at most 2 blocks)

#### Additional strategy: Protect "weak" regions by shifting

Definition of "weak" regions:

- "Hospital" regions (for TRP)
- "Rare" regions in each time slot (IDP and TRP)



#### **Evaluation/implementation:**

AS-ShiftRareRegions  $(n, d_1, d_2)$ - *n* : threshold for "rare" region determination -  $d_1$ : # of maximum shift for hospital regions -  $d_2$ : # of maximum shift for rare regions

AS (94, 0, 3) for ID disclosure challenge - Shift as many rare regions as possible by 3 -  $S_U = 0.70270$  (275598 regions untouched)

AS (89, 4, 3) for trace inference challenge - Shift all hospital regions by 4

- Shift as many rare regions as possible by 3 -  $S_{II} = 0.70211$  (283,175 regions untouched)

#### both vertically and horizontally

2000 \* 20 = 40000 regions

less than the threshold value

## **ID Disclosure**

**Basic strategy:** Feature vector comparison



### Additional strategy #2:

"Fuzzy" feature vector generation

When generating the feature vectors, count the target region and its surrounding regions "fuzzily."

#### Example:

| 0 | 0     | 0     | 0     | 0 | 0 | 0 | 0 |
|---|-------|-------|-------|---|---|---|---|
| 0 | 0.099 | 0.121 | 0.099 | 0 | 0 | 0 | 0 |
| 0 | 0.121 | 0.20  | 0.121 | 0 | 0 | 0 | 1 |
| 0 | 0.099 | 1.121 | 0.099 | 0 | 0 | 0 | 0 |
| 0 | 0     | 0     | 0     | 0 | 0 | 0 | 0 |

Fuzzy counting  $(n_0 = 0.2, \lambda = 0.5)$ 

Raw counting (equiv. to  $n_0 = 1, \lambda = \infty$ )

0

0

0

0

0

### **Evaluation/implementation:**

IF-FuzzyVisitVector  $(n_0, \lambda)$ 

- $n_0$  : initial quantity
- $\lambda$  : exponential decay constant

Experiments with sample data sets revealed that **IF (0.33,1)** with **Scheme 2** (TF weight:  $log(1 + f_{r,u})$ , IDF weight: 1) yields to the optimal ID disclosure result  $S_I$ .

#### ID disclosure evaluation: AS (94,0,3,0)



**Additional strategy #1:** "TF-IDF" style feature vector generation

When generating the feature vectors, weight "uncommon" regions more than "common" regions

|          | TF weight         | IDF weight   | The ontimal     |  |  |
|----------|-------------------|--------------|-----------------|--|--|
| Scheme 1 | f <sub>r,u</sub>  | $\log U/u_r$ | scheme is to be |  |  |
| Scheme 2 | $\log(1+f_{r,u})$ | 1            | found through   |  |  |
| Scheme 3 | f <sub>r,u</sub>  | $\log U/u_r$ | evaluation with |  |  |
| Scheme 4 | $\log(1+f_{r,u})$ | 1            | sample data.    |  |  |

 $f_{r,u}$ : raw count of Region r in User u's traces *U*: total # of users (2000)  $u_r$ : # of users whose traces contain Region r

"Fuzzy" counting is realized by an exponential decay function:  $c = n_0 e^{-\lambda d}$ 

 $(n_0: initial quantity, \lambda: exponential decay constant,$ *d*: distance from the target region)





### Trace Inference

#### **Basic strategy:**

List-up public anonymized traces on the basis of the ID disclosure result

Additional strategy: Use the reference trace sets to replace "frequent" regions

Reference trace set –

#### **Evaluation/implementation:**

TS-SwapFrequentRegions (*n*) - *n* : threshold for "frequent" region

15

20

