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Train/Valid BB A/BB mixed(50% each)
B 0.92 0.87
C 0.79 0.78
All_A 0.88 0.90
All_A+B 0.90 0.92

Method:

- Training ML model( ') with all A(all data Iin
prep.) and BB(original data) mixed data.

4% Analysis for Societ

society?

Any applications?

Linear vs Geometric Mixing (o = 0.5)
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o adapt each team’s

Notes:

- Weights are applied by
“geometric” and
“linear” calculation to

anonymization.

Patient A (Example)

How can we use our| |Patients may state incorrect
anonymized data for| |or unreliable information to

the local doctor (rather than

their actual current health
conditions).

TEST

AGE GENDER RACE obesity flag

54 W white ?

| have his basic information but
he insists that he does not have
any symptoms from obeasity...
Let me check with the model |
have from anoymized data

Diagnosis Assist
tool for Town
(Local) Doctors.

(Or May be any

Doctors)

(B ..

Doctor with Diagnosis
assist tool trained from
anonymized medical data

Advices Patient

Medical Diagnosis and> II

AV,
Age, Gender, mean_systolic_bp, : ®
mean_diastolic_bp, etc... .0 ole

Target: NHANES
(Real U.S. /Obesity(BMI>30))

Method:
- Logistic Regression
- Random Forest Classifier

AGE GENDER obesity flag

V] 1

With the Assist tool ...

diagnosis using an trained model from
anonymized medical data as a support.

54
Town (Local) Doctors can make medical ‘ ®

The model says that the flag for

obesity is " ". Maybe | should dig

into more information of his diet
on his next treatment

- XGBoost model
Best o
Model Accuracy | Precision | Recall F1 ROC-AUC
Threshold
Random | 35 0.856 0.649  [**0.954 **| =0.773** | 0.9219
Forest
Logistic | D41 1pg03=| 03 0.827 | **0.813** | **0.9599 **
Regression| (best F1)
0.315
XGBoost 0.84 0.622  |**0.960 **| 0.755 0.915
(best F1)
Who Said Anonymized Data Can’t Perform?
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