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Abstract

A hash function is one of most important concepts as
a primitive in cryptography. Especially, many attempts
to close to idealistic hash functions based on sophis-
ticated mathematical backgrounds are encouraging in
these days. One of the most successful suggestions for
cryptographic hash functions is a hash function based
on expander graphs which are proposed by Charles et
al. [3] in 2006 (see also [7]). It became the key ingre-
dient of constructing one of main Isogeny-based cryp-
tography such as SIDH (Supersingular Isogeny Diffie-
Hellman) key exchange.
In this talk we provide cryptographic hash functions

based on triplet and sextet graphs which are cubic high-
girth graphs. Triple and sextet graphs are introduced
by Biggs [1] and Biggs & Hoare [2] in 1983, respec-
tively. Since both of graphs can be generated from 2
by 2 matrix over a finite field, we follow up the way to
construct hash functions by Zémor [8] and Charles et
al. [3].
Triplet and sextet graphs are good candidates of un-

derlying graphs of hash functions because of the follow-
ing reasons. First these graphs have large girth, where
the girth of a graph G is the length of the shortest cy-
cles in G. High girth implies the collision resistance of
the corresponding hash function. It was proved in [1, 5]
that a triplet graph with n vertices has girth Ω(log2 n)
(n → ∞). For sextet graphs, it was conjectured in [2]
that the girth of a sextet graph with n vertices would
be Ω(log2 n) (n → ∞), and numerical results on small
sextet graphs support this conjecture ([2]).
Next triplet and sextet graphs have an expansion

property, which intuitively means that every vertex-
subset (of appropriate size) has large neighbour. This
fact affects to the property of the corresponding hash
function as preimage resistance ([4]). Here for a graph
G with vertex set V and a subsetX ⊂ V , the neighbour
NG(X) of X is the set of vertices in V \X adjacent to
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some vertex x ∈ X. It was proved in [6] that if a cu-
bic graph G with n vertices has girth at least c log2 n,
then there exists a constant ε > 0 such that for any
subset X ⊂ V with |X| = O(nα) (n → ∞) and a con-
stant α < (c log2 3)/4 we have |NG(X)| > ε|X|. This
fact implies an expansion property of triplet and sextet
graphs.
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